ترغب بنشر مسار تعليمي؟ اضغط هنا

Neural Dynamic Programming for Musical Self Similarity

82   0   0.0 ( 0 )
 نشر من قبل Christian Walder Dr
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a neural sequence model designed specifically for symbolic music. The model is based on a learned edit distance mechanism which generalises a classic recursion from computer sci- ence, leading to a neural dynamic program. Re- peated motifs are detected by learning the transfor- mations between them. We represent the arising computational dependencies using a novel data structure, the edit tree; this perspective suggests natural approximations which afford the scaling up of our otherwise cubic time algorithm. We demonstrate our model on real and synthetic data; in all cases it out-performs a strong stacked long short-term memory benchmark.



قيم البحث

اقرأ أيضاً

Interpretation of Deep Neural Networks (DNNs) training as an optimal control problem with nonlinear dynamical systems has received considerable attention recently, yet the algorithmic development remains relatively limited. In this work, we make an a ttempt along this line by reformulating the training procedure from the trajectory optimization perspective. We first show that most widely-used algorithms for training DNNs can be linked to the Differential Dynamic Programming (DDP), a celebrated second-order method rooted in the Approximate Dynamic Programming. In this vein, we propose a new class of optimizer, DDP Neural Optimizer (DDPNOpt), for training feedforward and convolution networks. DDPNOpt features layer-wise feedback policies which improve convergence and reduce sensitivity to hyper-parameter over existing methods. It outperforms other optimal-control inspired training methods in both convergence and complexity, and is competitive against state-of-the-art first and second order methods. We also observe DDPNOpt has surprising benefit in preventing gradient vanishing. Our work opens up new avenues for principled algorithmic design built upon the optimal control theory.
Using neural networks in the reinforcement learning (RL) framework has achieved notable successes. Yet, neural networks tend to forget what they learned in the past, especially when they learn online and fully incrementally, a setting in which the we ights are updated after each sample is received and the sample is then discarded. Under this setting, an update can lead to overly global generalization by changing too many weights. The global generalization interferes with what was previously learned and deteriorates performance, a phenomenon known as catastrophic interference. Many previous works use mechanisms such as experience replay (ER) buffers to mitigate interference by performing minibatch updates, ensuring the data distribution is approximately independent-and-identically-distributed (i.i.d.). But using ER would become infeasible in terms of memory as problem complexity increases. Thus, it is crucial to look for more memory-efficient alternatives. Interference can be averted if we replace global updates with more local ones, so only weights responsible for the observed data sample are updated. In this work, we propose the use of dynamic self-organizing map (DSOM) with neural networks to induce such locality in the updates without ER buffers. Our method learns a DSOM to produce a mask to reweigh each hidden units output, modulating its degree of use. It prevents interference by replacing global updates with local ones, conditioned on the agents state. We validate our method on standard RL benchmarks including Mountain Car and Lunar Lander, where existing methods often fail to learn without ER. Empirically, we show that our online and fully incremental method is on par with and in some cases, better than state-of-the-art in terms of final performance and learning speed. We provide visualizations and quantitative measures to show that our method indeed mitigates interference.
Musical onset detection can be formulated as a time-to-event (TTE) or time-since-event (TSE) prediction task by defining music as a sequence of onset events. Here we propose a novel method to model the probability of onsets by introducing a sequentia l density prediction model. The proposed model estimates TTE & TSE distributions from mel-spectrograms using convolutional neural networks (CNNs) as a density predictor. We evaluate our model on the Bock dataset show-ing comparable results to previous deep-learning models.
On-demand ride-pooling (e.g., UberPool) has recently become popular because of its ability to lower costs for passengers while simultaneously increasing revenue for drivers and aggregation companies. Unlike in Taxi on Demand (ToD) services -- where a vehicle is only assigned one passenger at a time -- in on-demand ride-pooling, each (possibly partially filled) vehicle can be assigned a group of passenger requests with multiple different origin and destination pairs. To ensure near real-time response, existing solutions to the real-time ride-pooling problem are myopic in that they optimise the objective (e.g., maximise the number of passengers served) for the current time step without considering its effect on future assignments. This is because even a myopic assignment in ride-pooling involves considering what combinations of passenger requests that can be assigned to vehicles, which adds a layer of combinatorial complexity to the ToD problem. A popular approach that addresses the limitations of myopic assignments in ToD problems is Approximate Dynamic Programming (ADP). Existing ADP methods for ToD can only handle Linear Program (LP) based assignments, however, while the assignment problem in ride-pooling requires an Integer Linear Program (ILP) with bad LP relaxations. To this end, our key technical contribution is in providing a general ADP method that can learn from ILP-based assignments. Additionally, we handle the extra combinatorial complexity from combinations of passenger requests by using a Neural Network based approximate value function and show a connection to Deep Reinforcement Learning that allows us to learn this value-function with increased stability and sample-efficiency. We show that our approach outperforms past approaches on a real-world dataset by up to 16%, a significant improvement in city-scale transportation problems.
108 - Santiago Onta~non 2020
The notions of distance and similarity play a key role in many machine learning approaches, and artificial intelligence (AI) in general, since they can serve as an organizing principle by which individuals classify objects, form concepts and make gen eralizations. While distance functions for propositional representations have been thoroughly studied, work on distance functions for structured representations, such as graphs, frames or logical clauses, has been carried out in different communities and is much less understood. Specifically, a significant amount of work that requires the use of a distance or similarity function for structured representations of data usually employs ad-hoc functions for specific applications. Therefore, the goal of this paper is to provide an overview of this work to identify connections between the work carried out in different areas and point out directions for future work.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا