ﻻ يوجد ملخص باللغة العربية
We present a neural sequence model designed specifically for symbolic music. The model is based on a learned edit distance mechanism which generalises a classic recursion from computer sci- ence, leading to a neural dynamic program. Re- peated motifs are detected by learning the transfor- mations between them. We represent the arising computational dependencies using a novel data structure, the edit tree; this perspective suggests natural approximations which afford the scaling up of our otherwise cubic time algorithm. We demonstrate our model on real and synthetic data; in all cases it out-performs a strong stacked long short-term memory benchmark.
Interpretation of Deep Neural Networks (DNNs) training as an optimal control problem with nonlinear dynamical systems has received considerable attention recently, yet the algorithmic development remains relatively limited. In this work, we make an a
Using neural networks in the reinforcement learning (RL) framework has achieved notable successes. Yet, neural networks tend to forget what they learned in the past, especially when they learn online and fully incrementally, a setting in which the we
Musical onset detection can be formulated as a time-to-event (TTE) or time-since-event (TSE) prediction task by defining music as a sequence of onset events. Here we propose a novel method to model the probability of onsets by introducing a sequentia
On-demand ride-pooling (e.g., UberPool) has recently become popular because of its ability to lower costs for passengers while simultaneously increasing revenue for drivers and aggregation companies. Unlike in Taxi on Demand (ToD) services -- where a
The notions of distance and similarity play a key role in many machine learning approaches, and artificial intelligence (AI) in general, since they can serve as an organizing principle by which individuals classify objects, form concepts and make gen