ﻻ يوجد ملخص باللغة العربية
Electric field-controlled, two-dimensional (2D) exciton dynamics in transition metal dichalcogenide monolayers is a current research focus in condensed matter physics. We have experimentally investigated the spectral and temporal properties of the A-exciton in a molybdenum diselenide (MoSe2) monolayer under controlled variation of a vertical, electric dc field at room temperature. By using steady-state and time-resolved photoluminescence spectroscopies, we have observed dc field-induced spectral shifts and linewidth broadenings that are consistent with the shortening of the excitons non-radiative lifetime due to field-induced dissociation. We discuss the implications of the results for future developments in nanoscale metrology and exploratory, optoelectronics technologies based on layered, 2D semiconductors.
Atomically-thin transition metal dichalcogenide crystals (TMDCs) hold great promise for future semiconductor optoelectronics due to their unique electronic and optical properties. In particular, electron-hole pairs (excitons) in TMDCs are stable at r
The optics of dangling-bond-free van der Waals heterostructures containing transition metal dichalcogenides are dominated by excitons. A crucial property of a confined exciton is the quantum confined Stark effect (QCSE). Here, such a heterostructure
We investigate the interactions between exciton-polaritons in N two-dimensional semiconductor layers embedded in a planar microcavity. In the limit of low-energy scattering, where we can ignore the composite nature of the excitons, we obtain exact an
Spin-orbit coupling is a fundamental mechanism that connects the spin of a charge carrier with its momentum. Likewise, in the optical domain, a synthetic spin-orbit coupling is accessible, for instance, by engineering optical anisotropies in photonic
Strong spin-orbit coupling and inversion symmetry breaking in transition metal dichalcogenide monolayers yield the intriguing effects of valley-dependent optical selection rules. As such, it is possible to substantially polarize valley excitons with