ترغب بنشر مسار تعليمي؟ اضغط هنا

Room-Temperature Quantum-Confined Stark Effect in Atomically Thin Semiconductor

59   0   0.0 ( 0 )
 نشر من قبل Michael Engel
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Electric field-controlled, two-dimensional (2D) exciton dynamics in transition metal dichalcogenide monolayers is a current research focus in condensed matter physics. We have experimentally investigated the spectral and temporal properties of the A-exciton in a molybdenum diselenide (MoSe2) monolayer under controlled variation of a vertical, electric dc field at room temperature. By using steady-state and time-resolved photoluminescence spectroscopies, we have observed dc field-induced spectral shifts and linewidth broadenings that are consistent with the shortening of the excitons non-radiative lifetime due to field-induced dissociation. We discuss the implications of the results for future developments in nanoscale metrology and exploratory, optoelectronics technologies based on layered, 2D semiconductors.



قيم البحث

اقرأ أيضاً

224 - M. Wurdack , E. Estrecho , S. Todd 2021
Atomically-thin transition metal dichalcogenide crystals (TMDCs) hold great promise for future semiconductor optoelectronics due to their unique electronic and optical properties. In particular, electron-hole pairs (excitons) in TMDCs are stable at r oom temperature and interact strongly with light. When TMDCs are embedded in an optical microcavity, the excitons can hybridise with cavity photons to form exciton polaritons (polaritons herein), which display both ultrafast velocities and strong interactions. The ability to manipulate and trap polaritons on a microchip is critical for future applications. Here, we create a potential landscape for room-temperature polaritons in monolayer WS$_2$, and demonstrate their free propagation and trapping. We show that the effect of dielectric disorder, which restricts the diffusion of WS$_2$ excitons and broadens their spectral resonance, is dramatically reduced in the strong exciton-photon coupling regime leading to motional narrowing. This enables the ballistic transport of WS$_2$ polaritons across tens of micrometers with an extended range of partial first-order coherence. Moreover, the dephasing of trapped polaritons is dramatically suppressed compared to both WS$_2$ excitons and free polaritons. Our results demonstrate the possibility of long-range transport and efficient trapping of TMDC polaritons in ambient conditions.
The optics of dangling-bond-free van der Waals heterostructures containing transition metal dichalcogenides are dominated by excitons. A crucial property of a confined exciton is the quantum confined Stark effect (QCSE). Here, such a heterostructure is used to probe the QCSE by applying a uniform vertical electric field across a molybdenum disulfide (MoS$_2$) monolayer. The photoluminescence emission energies of the neutral and charged excitons shift quadratically with the applied electric field provided the electron density remains constant, demonstrating that the exciton can be polarized. Stark shifts corresponding to about half the homogeneous linewidth were achieved. Neutral and charged exciton polarizabilities of $(7.8~pm~1.0)times 10^{-10}~tr{D~m~V}^{-1}$ and $(6.4~pm~0.9)times 10^{-10}~tr{D~m~V}^{-1}$ at relatively low electron density ($8 times 10^{11}~tr{cm}^{-2}$) have been extracted, respectively. These values are one order of magnitude lower than the previously reported values, but in line with theoretical calculations. The methodology presented here is versatile and can be applied to other semiconducting layered materials as well.
117 - O. Bleu , G. Li , J. Levinsen 2020
We investigate the interactions between exciton-polaritons in N two-dimensional semiconductor layers embedded in a planar microcavity. In the limit of low-energy scattering, where we can ignore the composite nature of the excitons, we obtain exact an alytical expressions for the spin-triplet and spin-singlet interaction strengths, which go beyond the Born approximation employed in previous calculations. Crucially, we find that the strong light-matter coupling enhances the strength of polariton-polariton interactions compared to that of the exciton-exciton interactions, due to the Rabi coupling and the small photon-exciton mass ratio. We furthermore obtain the dependence of the polariton interactions on the number of layers N, and we highlight the important role played by the optically dark states that exist in multiple layers. In particular, we predict that the singlet interaction strength is stronger than the triplet one for a wide range of parameters in most of the currently used transition metal dichalcogenides. This has consequences for the pursuit of polariton condensation and other interaction-driven phenomena in these materials.
Spin-orbit coupling is a fundamental mechanism that connects the spin of a charge carrier with its momentum. Likewise, in the optical domain, a synthetic spin-orbit coupling is accessible, for instance, by engineering optical anisotropies in photonic materials. Both, akin, yield the possibility to create devices directly harnessing spin- and polarization as information carriers. Atomically thin layers of transition metal dichalcogenides provide a new material platform which promises intrinsic spin-valley Hall features both for free carriers, two-particle excitations (excitons), as well as for photons. In such materials, the spin of an exciton is closely linked to the high-symmetry point in reciprocal space it emerges from. Here, we demonstrate, that spin, and hence valley selective propagation is accessible in an atomically thin layer of MoSe2, which is strongly coupled to a microcavity photon mode. We engineer a wire-like device, where we can clearly trace the flow, and the helicity of exciton-polaritons expanding along a channel. By exciting a coherent superposition of K and K- tagged polaritons, we observe valley selective expansion of the polariton cloud without neither any applied external magnetic fields nor coherent Rayleigh scattering. Unlike the valley Hall effect for TMDC excitons, the observed optical valley Hall effect (OVHE) strikingly occurs on a macroscopic scale, and clearly reveals the potential for applications in spin-valley locked photonic devices.
Strong spin-orbit coupling and inversion symmetry breaking in transition metal dichalcogenide monolayers yield the intriguing effects of valley-dependent optical selection rules. As such, it is possible to substantially polarize valley excitons with chiral light and furthermore create coherent superpositions of K and K- polarized states. Yet, at ambient conditions dephasing usually becomes too dominant, and valley coherence typically is not observable. Here, we demonstrate that valley coherence is, however, clearly observable for a single monolayer of WSe2, if it is strongly coupled to the optical mode of a high quality factor microcavity. The azimuthal vector, representing the phase of the valley coherent superposition, can be directly manipulated by applying magnetic fields, and furthermore, it sensibly reacts to the polarization anisotropy of the cavity which represents an artificial magnetic field. Our results are in qualitative and quantitative agreement with our model based on pseudospin rate equations, accounting for both effects of real and pseudo-magnetic fields.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا