ﻻ يوجد ملخص باللغة العربية
Let either $R_k(t) := |P_k(e^{it})|^2$ or $R_k(t) := |Q_k(e^{it})|^2$, where $P_k$ and $Q_k$ are the usual Rudin-Shapiro polynomials of degree $n-1$ with $n=2^k$. In a recent paper we combined close to sharp upper bounds for the modulus of the autocorrelation coefficients of the Rudin-Shapiro polynomials with a deep theorem of Littlewood to prove that there is an absolute constant $A>0$ such that the equation $R_k(t) = (1+eta )n$ has at least $An^{0.5394282}$ distinct zeros in $[0,2pi)$ whenever $eta$ is real and $|eta| < 2^{-11}$. In this paper we show that the equation $R_k(t)=(1+eta)n$ has at least $(1/2-|eta|-varepsilon)n/2$ distinct zeros in $[0,2pi)$ for every $eta in (-1/2,1/2)$, $varepsilon > 0$, and sufficiently large $k geq k_{eta,varepsilon}$.
In signal processing the Rudin-Shapiro polynomials have good autocorrelation properties and their values on the unit circle are small. Binary sequences with low autocorrelation coefficients are of interest in radar, sonar, and communication systems.
We consider the class of Rudin-Shapiro-like polynomials, whose $L^4$ norms on the complex unit circle were studied by Borwein and Mossinghoff. The polynomial $f(z)=f_0+f_1 z + cdots + f_d z^d$ is identified with the sequence $(f_0,f_1,ldots,f_d)$ of
For the weight function $W_mu(x) = (1-|x|^2)^mu$, $mu > -1$, $lambda > 0$ and $b_mu$ a normalizing constant, a family of mutually orthogonal polynomials on the unit ball with respect to the inner product $$ la f,g ra = {b_mu [int_{BB^d} f(x) g(x) W
A joint algebraic interpretation of the biorthogonal Askey polynomials on the unit circle and of the orthogonal Jacobi polynomials is offered. It ties their bispectral properties to an algebra called the meta-Jacobi algebra $mmathfrak{J}$.
We shall establish two-side explicit inequalities, which are asymptotically sharp up to a constant factor, on the maximum value of $|H_k(x)| e^{-x^2/2},$ on the real axis, where $H_k$ are the Hermite polynomials.