ﻻ يوجد ملخص باللغة العربية
Nonequilibrium conditions offer novel routes to superconductivity that are not available at equilibrium. For example, by engineering nonequilibrium electronic populations, pairing may develop between electrons in different energy bands. A concrete proposal has been made to photo-induce superconductivity in a semiconductor, where pairing occurs between electrons in the conduction and valence bands, even for repulsive interactions. Here, we calculate the superfluid density for such a nonequilibrium paired state, and find it to be positive for repulsive interactions and interband pairing. The positivity of the superfluid density implies the stability of the photo-induced superconducting state as well as the existence of the Meissner effect.
Photo-excitation is a very powerful way to instantaneously drive a material into a novel quantum state without any fabrication, and variable ultrafast techniques have been developed to observe how electron-, lattice-, and spin-degrees of freedom chan
Fulde, Ferrell, Larkin, and Ovchinnikov (FFLO) predicted inhomogeneous superconducting and superfluid ground states, spontaneously breaking translation symmetries. In this Letter, we demonstrate that the transition from the FFLO to the normal state a
Oxygen NMR is used to probe the local influence of nonmagnetic Zn and magnetic Ni impurities in the superconducting state of optimally doped high Tc YBa2Cu3O7. Zn and Ni induce a staggered paramagnetic polarization, similar to that evidenced above Tc
The interface between the insulating oxides LaAlO3 and SrTiO3 exhibits a superconducting two-dimensional electron system that can be modulated by a gate voltage. While gating of the conductivity has been probed extensively and gating of the supercond
Ultrafast terahertz (THz) pump{probe spectroscopy reveals unusual out-of-equilibrium Cooper pair dynamics driven by femtosecond (fs) optical quench of superconductivity (SC) in iron pnictides. We observe a two{step quench of the SC gap, where an abno