ﻻ يوجد ملخص باللغة العربية
Two dwarf irregular galaxies DDO 187 and NGC 3738 exhibit a striking pattern of star formation: intense star formation is taking place in a large region occupying roughly half of the inner part of the optical galaxy. We use data on the HI distribution and kinematics and stellar images and colors to examine the properties of the environment in the high star formation rate (HSF) halves of the galaxies in comparison with the low star formation rate (LSF) halves. We find that the pressure and gas density are higher on the HSF sides by 30-70%. In addition we find in both galaxies that the HI velocity fields exhibit significant deviations from ordered rotation and there are large regions of high velocity dispersion and multiple velocity components in the gas beyond the inner regions of the galaxies. The conditions in the HSF regions are likely the result of large-scale external processes affecting the internal environment of the galaxies and enabling the current star formation there.
We have obtained deep images of the highly isolated (d = 1 Mpc) Aquarius dwarf irregular galaxy (DDO 210) with the Hubble Space Telescope (HST) Advanced Camera for Surveys (ACS). The resulting color-magnitude diagram (CMD) reaches more than a magnitu
Turbulence has the potential for creating gas density enhancements that initiate cloud and star formation (SF), and it can be generated locally by SF. To study the connection between turbulence and SF, we looked for relationships between SF traced by
We present a detailed study of the Magellanic irregular galaxy NGC 4449 based on both archival and new photometric data from the Legacy Extragalactic UV Survey, obtained with the Hubble Space Telescope Advanced Camera for Surveys and Wide Field Camer
We present new, high sensitivity VLA observations of HI in four dwarf galaxies (UGCA 292, GR8, DDO 210, and DDO 216) and we use these data to study interactions between star formation and the interstellar medium. HI velocity dispersions and line shap
To study the star formation and feedback mechanism, we simulate the evolution of an isolated dwarf irregular galaxy (dIrr) in a fixed dark matter halo, similar in size to WLM, using a new stellar feedback scheme. We use the new version of our origina