ﻻ يوجد ملخص باللغة العربية
In this paper, we explore methods of complicating self-supervised tasks for representation learning. That is, we do severe damage to data and encourage a network to recover them. First, we complicate each of three powerful self-supervised task candidates: jigsaw puzzle, inpainting, and colorization. In addition, we introduce a novel complicated self-supervised task called Completing damaged jigsaw puzzles which is puzzles with one piece missing and the other pieces without color. We train a convolutional neural network not only to solve the puzzles, but also generate the missing content and colorize the puzzles. The recovery of the aforementioned damage pushes the network to obtain robust and general-purpose representations. We demonstrate that complicating the self-supervised tasks improves their origin
The paper proposes a solution based on Generative Adversarial Network (GAN) for solving jigsaw puzzles. The problem assumes that an image is cut into equal square pieces, and asks to recover the image according to pieces information. Conventional jig
The target of 2D human pose estimation is to locate the keypoints of body parts from input 2D images. State-of-the-art methods for pose estimation usually construct pixel-wise heatmaps from keypoints as labels for learning convolution neural networks
We propose a novel approach for instance-level image retrieval. It produces a global and compact fixed-length representation for each image by aggregating many region-wise descriptors. In contrast to previous works employing pre-trained deep networks
An important goal in human-robot-interaction (HRI) is for machines to achieve a close to human level of face perception. One of the important differences between machine learning and human intelligence is the lack of compositionality. This paper intr
Image representations, from SIFT and Bag of Visual Words to Convolutional Neural Networks (CNNs), are a crucial component of almost any image understanding system. Nevertheless, our understanding of them remains limited. In this paper we conduct a di