ترغب بنشر مسار تعليمي؟ اضغط هنا

Losses in plasmonics: from mitigating energy dissipation to embracing loss-enabled functionalities

251   0   0.0 ( 0 )
 نشر من قبل Svetlana Boriskina
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Unlike conventional optics, plasmonics enables unrivalled concentration of optical energy well beyond the diffraction limit of light. However, a significant part of this energy is dissipated as heat. Plasmonic losses present a major hurdle in the development of plasmonic devices and circuits that can compete with other mature technologies. Until recently, they have largely kept the use of plasmonics to a few niche areas where loss is not a key factor, such as surface enhanced Raman scattering and biochemical sensing. Here, we discuss the origin of plasmonic losses and various approaches to either minimize or mitigate them based on understanding of fundamental processes underlying surface plasmon modes excitation and decay. Along with the ongoing effort to find and synthesize better plasmonic materials, optical designs that modify the optical powerflow through plasmonic nanostructures can help in reducing both radiative damping and dissipative losses of surface plasmons. Another strategy relies on the development of hybrid photonic-plasmonic devices by coupling plasmonic nanostructures to resonant optical elements. Hybrid integration not only helps to reduce dissipative losses and radiative damping of surface plasmons, but also makes possible passive radiative cooling of nano-devices. Finally, we review emerging applications of thermoplasmonics that leverage Ohmic losses to achieve new enhanced functionalities. The most successful commercialized example of a loss-enabled novel application of plasmonics is heat-assisted magnetic recording. Other promising technological directions include thermal emission manipulation, cancer therapy, nanofabrication, nano-manipulation, plasmon-enabled material spectroscopy and thermo-catalysis, and solar water treatment.



قيم البحث

اقرأ أيضاً

The advancement of nanoscale electronics has been limited by energy dissipation challenges for over a decade. Such limitations could be particularly severe for two-dimensional (2D) semiconductors integrated with flexible substrates or multi-layered p rocessors, both being critical thermal bottlenecks. To shed light into fundamental aspects of this problem, here we report the first direct measurement of spatially resolved temperature in functioning 2D monolayer MoS$_2$ transistors. Using Raman thermometry we simultaneously obtain temperature maps of the device channel and its substrate. This differential measurement reveals the thermal boundary conductance (TBC) of the MoS$_2$ interface (14 $pm$ 4 MWm$^-$$^2$K$^-$$^1$) is an order magnitude larger than previously thought, yet near the low end of known solid-solid interfaces. Our study also reveals unexpected insight into non-uniformities of the MoS$_2$ transistors (small bilayer regions), which do not cause significant self-heating, suggesting that such semiconductors are less sensitive to inhomogeneity than expected. These results provide key insights into energy dissipation of 2D semiconductors and pave the way for the future design of energy-efficient 2D electronics.
In this article we demonstrate that a grating fabricated through nanoscale volumetric crosslinking of a liquid crystalline polymer enables remote polarization control over the diffracted channels. This functionality is a consequence of the responsivi ty of liquid crystal networks upon light stimuli. Tuning the photonic response of the device is obtained thanks to both a refractive index and a shape change of the grating elements induced by a molecular rearrangement under irradiation. In particular, the material anisotropy allows for nontrivial polarization state management over multiple beams. Absence of any liquid component and a time response down to 0.2 milliseconds make our device appealing in the fields of polarimetry and optical communications.
Plasmonics applications have been extending into the ultraviolet region of the electromagnetic spectrum. Unfortunately the commonly used noble metals have intrinsic optical properties that limit their use above 350 nm. Aluminum is probably the most s uitable material for UV plasmonics and in this work we show that nanoporous aluminum can be prepared starting from an alloy of Mg3Al2. The porous metal is obtained by means of a galvanic replacement reaction. Such a nanoporous metal can be exploited to achieve a plasmonic material for enhanced UV Raman spectroscopy and fluorescence. Thanks to the large surface to volume ratio this material represents a powerful platform for promoting interaction between plasmonic substrates and molecules in the UV.
Here we investigate how local properties of particles in a thermal bath influence the thermodynamics of the bath. We utilize nanothermodynamics, based on two postulates: that small systems can be treated self-consistently by coupling to an ensemble o f similarly small systems, and that a large ensemble of small systems forms its own thermodynamic bath. We adapt these ideas to study how a large system may subdivide into an ensemble of smaller subsystems, causing internal heterogeneity across multiple size scales. For the semi-classical ideal gas, maximum entropy favors subdividing a large system of atoms into regions of variable size. The mechanism of region formation could come from quantum exchange that makes atoms in each region indistinguishable, while decoherence between regions allows atoms in separate regions to be distinguishable by location. Combining regions reduces the total entropy, as expected when distinguishable particles become indistinguishable, and as required by theorems for sub-additive entropy. Combining large volumes of small regions gives the entropy of mixing for a semi-classical ideal gas, resolving Gibbs paradox without invoking quantum symmetry for distant atoms. Other models we study are based on Ising-like spins in 1-D. We find similarity in the properties of a two-state model in the nanocanonical ensemble and a three-state model in the canonical ensemble. Thus, emergent phenomena may alter the thermal behavior of microscopic models, and the correct ensemble is necessary for fully-accurate predictions. We add a nonlinear correction to Boltzmanns factor in simulations of the Ising-like spins to imitate the dynamics of spin exchange on intermediate lengths, yielding the statistics of indistinguishable states. These simulations exhibit 1/f-like noise at low frequencies (f), and white noise at higher f, similar to the thermal fluctuations found in many materials.
Light-matter coupling in excitonic materials has been the subject of intense investigation due to emergence of new excitonic materials. Two-dimensional layered hybrid organic/inorganic perovskites (2D HOIPs) support strongly bound excitons at room-te mperatures with some of the highest oscillator strengths and electric loss tangents among the known excitonic materials. Here, we report strong light-matter coupling in Ruddlesden-Popper phase 2D-HOIPs crystals without the necessity of an external cavity. We report concurrent occurrence of multiple-orders of hybrid light-matter states via both reflectance and luminescence spectroscopy in thick (> 100 nm) crystals and near-unity absorption in thin (< 20 nm) crystals. We observe resonances with quality factors > 250 in hybridized exciton-polaritons and identify a linear correlation between exciton-polariton mode splitting and extinction coefficient of the various 2D-HOIPs. Our work opens the door to studying polariton dynamics in self-hybridized and open cavity systems with broad applications in optoelectronics and photochemistry.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا