ترغب بنشر مسار تعليمي؟ اضغط هنا

Realization of a spin wave switch based on the Spin-Transfer-Torque effect

141   0   0.0 ( 0 )
 نشر من قبل Thomas Br\\\"acher
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the amplification of externally excited spin waves via the Spin-Transfer-Torque (STT) effect in combination with the Spin-Hall-Effect (SHE) employing short current pulses. The results reveal that, in the case of an overcompensation of the spin wave damping, a strong nonlinear shift of the spin wave frequency spectrum occurs. In particular, this shift affects the spin wave amplification using the SHE-STT effect. In contrast, this effect allows for the realization of a spin wave switch. By determining the corresponding working point, an efficient spin wave excitation is only possible in the presence of the SHE-STT effect yielding an increased spin wave intensity of a factor of 20 compared to the absence of the SHE-STT effect.



قيم البحث

اقرأ أيضاً

Spin-transfer torques in a nanocontact to an extended magnetic film can create spin waves that condense to form dissipative droplet solitons. Here we report an experimental study of the temperature dependence of the current and applied field threshol ds for droplet soliton formation, as well as the nanocontacts electrical characteristics associated with droplet dynamics. Nucleation of droplet solitons requires higher current densities at higher temperatures, in contrast to typical spin-transfer torque induced switching between static magnetic states. Magnetoresistance and electrical noise measurements show that soliton instabilities become more pronounced with increasing temperature. These results are of fundamental interest in understanding the influence of thermal noise on droplet solitons, and in controlling their dynamics.
We present a time-resolved study of the DC-current driven magnetization dynamics in a microstructured Cr/Heusler/Pt waveguide by means of Brillouin light scattering. A reduction of the effective spin-wave damping via the spin-transfer-torque effect l eads to a strong increase in the magnon density. This is accompanied by a decrease of the spin-wave frequencies. By evaluating the time scales of these effects, the origin of this frequency shift can be identified. However, recently, we found that the experimental setup partially influences the decay of the spin-wave intensity after the current pulse is switched off. Thus, further investigations on the presented effect are needed to allow for a more detailed analysis. For this reason, we need to withdraw the manuscript at this point and might publish an updated version later.
In the normal metal/ferromagnetic insulator bilayer (such as Pt/Y$_{3}$Fe$_{5}$O$_{12}$) and the normal metal/ferromagnetic metal/oxide trilayer (such as Pt/Co/AlO$_{x}$) where spin injection and ejection are achieved by the spin Hall effect in the n ormal metal, we propose a minimal model based on quantum tunneling of spins to explain the spin-transfer torque and spin pumping caused by the spin Hall effect. The ratio of their damping-like to field-like component depends on the tunneling wave function that is strongly influenced by generic material properties such as interface $s-d$ coupling, insulating gap, and layer thickness, yet the spin relaxation plays a minor role. The quantified result renders our minimal model an inexpensive tool for searching for appropriate materials.
We report the theoretical investigation of noise spectrum of spin current and spin transfer torque for non-colinear spin polarized transport in a spin-valve device which consists of normal scattering region connected by two ferromagnetic electrodes. Our theory was developed using non-equilibrium Greens function method and general non-linear $S^sigma-V$ and $S^tau-V$ relations were derived as a function of angle $theta$ between magnetization of two leads. We have applied our theory to a quantum dot system with a resonant level coupled with two ferromagnetic electrodes. It was found that for the MNM system, the auto-correlation of spin current is enough to characterize the fluctuation of spin current. For a system with three ferromagnetic layers, however, both auto-correlation and cross-correlation of spin current are needed to characterize the noise spectrum of spin current. Furthermore, the spin transfer torque and the torque noise were studied for the MNM system. For a quantum dot with a resonant level, the derivative of spin torque with respect to bias voltage is proportional to $sintheta$ when the system is far away from the resonance. When the system is near the resonance, the spin transfer torque becomes non-sinusoidal function of $theta$. The derivative of noise spectrum of spin transfer torque with respect to the bias voltage $N_tau$ behaves differently when the system is near or far away from the resonance. Specifically, the differential shot noise of spin transfer torque $N_tau$ is a concave function of $theta$ near the resonance while it becomes convex function of $theta$ far away from resonance. For certain bias voltages, the period $N_tau(theta)$ becomes $pi$ instead of $2pi$. For small $theta$, it was found that the differential shot noise of spin transfer torque is very sensitive to the bias voltage and the other system parameters.
A theoretical analysis is developed on spin-torque diode effect in nonlinear region. An analytical solution of the diode voltage generated from spin-torque oscillator by the rectification of an alternating current is derived. The diode voltage is rev ealed to depend nonlinearly on the phase difference between the oscillator and the alternating current. The validity of the analytical prediction is confirmed by numerical simulation of the Landau-Lifshitz-Gilbert equation. The results indicate that the spin-torque diode effect is useful to evaluate the phase of a spin-torque oscillator in forced synchronization state.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا