Hybrid Nodal Loop Metal: Unconventional Magnetoresponse and Material Realization


الملخص بالإنكليزية

A nodal loop is formed by band crossing along a one-dimensional closed manifold, with each point on the loop a linear nodal point in the transverse dimensions and can be classified as type-I or type-II depending on the band dispersion. Here, we propose a class of nodal loops composed of both type-I and type-II points, which are hence termed as hybrid nodal loops. Based on firstprinciples calculations, we predict the realization of such loops in the existing electride material Ca2As. For a hybrid loop, the Fermi surface consists of coexisting electron and hole pockets that touch at isolated points for an extended range of Fermi energies, without the need for fine-tuning. This leads to unconventional magnetic responses, including the zero-field magnetic breakdown and the momentum space Klein tunneling observable in the magnetic quantum oscillations, as well as the peculiar anisotropy in the cyclotron resonance.

تحميل البحث