ترغب بنشر مسار تعليمي؟ اضغط هنا

Decay of standard model-like Higgs boson $hrightarrow mutau$ in a 3-3-1 model with inverse seesaw neutrino masses

111   0   0.0 ( 0 )
 نشر من قبل Le Tho Hue
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

By adding new gauge singlets of neutral leptons, the improv



قيم البحث

اقرأ أيضاً

The one loop contribution to the lepton flavor violating decay $h^0rightarrow mutau$ of the SM-like neutral Higgs (LFVHD) in the 3-3-1 model with neutral lepton is calculated using the unitary gauge. We have checked in detail that the total contribut ion is exactly finite, and the divergent cancellations happen separately in two parts of active neutrinos and exotic heavy leptons. By numerical investigation, we have indicated that the one-loop contribution of the active neutrinos is very suppressed while that of exotic leptons is rather large. The branching ratio of the LFVHD strongly depends on the Yukawa couplings between exotic leptons and $SU(3)_L$ Higgs triplets. This ratio can reach $10^{-5}$ providing large Yukawa couplings and constructive correlations of the $SU(3)_L$ scale ($v_3$) and the charged Higgs masses. The branching ratio decreases rapidly with the small Yukawa couplings and large $v_3$.
In the framework of the flipped 3-3-1 model introduced recently [1], the lepton-flavor-violating (LFV) decay $mu rightarrow 3e$ was predicted to have a large branching ratio (Br) close to the recent experimental limit. We will show that the Br of LFV decays of the standard-model-like (SM-like) Higgs boson decays (LFVHD) Br$(hrightarrow e_ae_b)$ may also be large. Namely, the Br$(hrightarrow mutau,etau)$ can reach values of $mathcal{O}(10^{-4})-mathcal{O}(10^{-5})$, which will reach the upcoming experimental sensitivities. On the other hand, for LFV decays of charged leptons (cLFV) $(e_brightarrow e_agamma)$, the branching ratios are well below experimental bounds.
In this paper we present the mass matrices and mass eigenstates for the CP-even neutral scalars in the minimal 331 model (m331) and its self-interactions, showing that the m331 automatically reproduces the Higgs potential of the Standard Model. We al so present a method to generate numerical solutions for the quarks and leptons masses and their mixings, which we apply to study FCNC processes, being to calculate the contributions of all exotic neutral particles of the m331 to the mass differences in meson oscillations.
A new model for tiny neutrino masses is proposed in the gauge theory of $SU(3)_C otimes SU(3)_L otimes U(1)_X$, where neutrino masses are generated via the quantum effect of new particles. In this model, the fermion content is taken to be minimal to realize the gauge anomaly cancellation, while the scalar sector is extended from the minimal 3-3-1 model to have an additional $SU(3)_L$ triplet field. After $SU(3)_Lotimes U(1)_X$ is broken into $SU(2)_Lotimes U(1)_Y$, the Zee model like diagrams are naturally induced, which contain sufficient lepton flavor violating interactions to reproduce current neutrino oscillation data. Furthermore, the remnant $Z_2$ symmetry appears after the electroweak symmetry breaking, which guarantees the stability of dark matter. It is confirmed that this model can satisfy current dark matter data. As an important prediction to test this model, productions and decays of doubly-charged scalar bosons at collider experiments are discussed in successful benchmark scenarios.
After the LHC is turning on and accumulating more data, the TeV scale seesaw mechanisms for small neutrino masses in the form of inverse seesaw mechanisms are gaining more and more attention once they provide neutrino masses at sub-eV scale and can b e probed at the LHC. Here we restrict our investigation to the inverse type II seesaw case and implement it into the framework of the 3-3-1 model with right-handed neutrinos. As interesting result, the mechanism provides small masses to both the standard neutrinos as well as to the right-handed ones. Its best signature are the doubly charged scalars which are sextet by the 3-3-1 symmetry. We investigate their production at the LHC through the process $sigma (p,p rightarrow Z^*, gamma^* ,Z^{prime} rightarrow Delta^{++},Delta^{--})$ and their signal through four leptons final state decay channel.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا