ترغب بنشر مسار تعليمي؟ اضغط هنا

The influence of a sub-stellar continent on the climate of a tidally-locked exoplanet

99   0   0.0 ( 0 )
 نشر من قبل Neil Lewis
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Previous studies have demonstrated that continental carbon-silicate weathering is important to the continued habitability of a terrestrial planet. Despite this, few studies have considered the influence of land on the climate of a tidally-locked planet. In this work we use the Met Office Unified Model, coupled to a land surface model, to investigate the climate effects of a continent located at the sub-stellar point. We choose to use the orbital and planetary parameters of Proxima Centauri B as a template, to allow comparison with the work of others. A region of the surface where $T_{text{s}} > 273.15,text{K}$ is always retained, and previous conclusions on the habitability of Proxima Centauri B remain intact. We find that sub-stellar land causes global cooling, and increases day-night temperature contrasts by limiting heat redistribution. Furthermore, we find that sub-stellar land is able to introduce a regime change in the atmospheric circulation. Specifically, when a continent offset to the east of the sub-stellar point is introduced, we observe the formation of two mid-latitude counterrotating jets, and a substantially weakened equatorial superrotating jet.



قيم البحث

اقرأ أيضاً

The majority of potentially habitable exoplanets detected orbit stars cooler than the Sun, and therefore are irradiated by a stellar spectrum peaking at longer wavelengths than that incident on Earth. Here, we present results from a set of simulation s of tidally-locked terrestrial planets orbiting three different host stars to isolate the effect of the stellar spectra on the simulated climate. Specifically, we perform simulations based on TRAPPIST-1e, adopting an Earth-like atmosphere and using the UK Met Office Unified Model in an idealised aqua-planet configuration. Whilst holding the planetary parameters constant, including the total stellar flux (900 W/m$^2$) and orbital period (6.10 Earth days), we compare results between simulations where the stellar spectrum is that of a quiescent TRAPPIST-1, Proxima Centauri and the Sun. The simulations with cooler host stars had an increased proportion of incident stellar radiation absorbed directly by the troposphere compared to the surface. This, in turn, led to an increase in the stability against convection, a reduction in overall cloud coverage on the dayside (reducing scattering), leading to warmer surface temperatures. The increased direct heating of the troposphere also led to more efficient heat transport from the dayside to the nightside and, therefore, a reduced day-night temperature contrast. We inferred that planets with an Earth-like atmosphere orbiting cooler stars had lower dayside cloud coverage, potentially allowing habitable conditions at increased orbital radii, compared to similar planets orbiting hotter stars for a given planetary rotation rate.
Using a 3D general circulation model (GCM), we investigate the sensitivity of the climate of tidally-locked Earth-like exoplanets, Trappist-1e and Proxima Centauri b, to the choice of a convection parameterization. Compared to a mass-flux convection parameterization, a simplified convection adjustment parameterization leads to a $>$60% decrease of the cloud albedo, increasing the mean day-side temperature by $approx$10 K. The representation of convection also affects the atmospheric conditions of the night side, via a change in planetary-scale wave patterns. As a result, using the convection adjustment scheme makes the night-side cold traps warmer by 17-36 K for the planets in our simulations. The day-night thermal contrast is sensitive to the representation of convection in 3D GCM simulations, so caution should be taken when interpreting emission phase curves. The choice of convection treatment, however, does not alter the simulated climate enough to result in a departure from habitable conditions, at least for the atmospheric composition and planetary parameters used in our study. The near-surface conditions both in the Trappist-1e and Proxima b cases remain temperate, allowing for an active water cycle. We further advance our analysis using high-resolution model experiments, in which atmospheric convection is simulated explicitly. Our results suggest that in a hypothetical global convection-permitting simulation the surface temperature contrast would be higher than in the coarse-resolution simulations with parameterized convection. In other words, models with parameterized convection may overestimate the inter-hemispheric heat redistribution efficiency.
Using a shallow water model with time-dependent forcing we show that the peak of an exoplanet thermal phase curve is, in general, offset from secondary eclipse when the planet is rotating. That is, the planetary hot-spot is offset from the point of m aximal heating (the substellar point) and may lead or lag the forcing; the extent and sign of the offset is a function of both the rotation rate and orbital period of the planet. We also find that the system reaches a steady-state in the reference frame of the moving forcing. The model is an extension of the well studied Matsuno-Gill model into a full spherical geometry and with a planetary-scale translating forcing representing the insolation received on an exoplanet from a host star. The speed of the gravity waves in the model is shown to be a key metric in evaluating the phase curve offset. If the velocity of the substellar point (relative to the planets surface) exceeds that of the gravity waves then the hotspot will lag the substellar point, as might be expected by consideration of forced gravity wave dynamics. However, when the substellar point is moving slower than the internal wavespeed of the system the hottest point can lead the passage of the forcing. We provide an interpretation of this result by consideration of the Rossby and Kelvin wave dynamics as well as, in the very slowly rotating case, a one-dimensional model that yields an analytic solution. Finally, we consider the inverse problem of constraining planetary rotation rate from an observed phase curve.
Terrestrial planets orbiting within the habitable zones of M-stars are likely to become tidally locked in a 1:1 spin:orbit configuration and are prime targets for future characterization efforts. An issue of importance for the potential habitability of terrestrial planets is whether they could experience snowball events (periods of global glaciation). Previous work using an intermediate complexity atmospheric Global Climate Model (GCM) with no ocean heat transport suggested that tidally locked planets would smoothly transition to a snowball, in contrast with Earth, which has bifurcations and hysteresis in climate state associated with global glaciation. In this paper, we use a coupled ocean-atmosphere GCM (ROCKE-3D) to model tidally locked planets with no continents. We chose this configuration in order to consider a case that we expect to have high ocean heat transport. We show that including ocean heat transport does not reintroduce the snowball bifurcation. An implication of this result is that a tidally locked planet in the habitable zone is unlikely to be found in a snowball state for a geologically significant period of time.
Tidally locked exoplanets likely host global atmospheric circulations with a superrotating equatorial jet, planetary-scale stationary waves and thermally-driven overturning circulation. In this work, we show that each of these features can be separat ed from the total circulation by using a Helmholtz decomposition, which splits the circulation into rotational (divergence free) and divergent (vorticity free) components. This technique is applied to the simulated circulation of a terrestrial planet and a gaseous hot Jupiter. For both planets, the rotational component comprises the equatorial jet and stationary waves, and the divergent component contains the overturning circulation. Separating out each component allows us to evaluate their spatial structure and relative contribution to the total flow. In contrast with previous work, we show that divergent velocities are not negligible when compared with rotational velocities, and that divergent, overturning circulation takes the form of a single, roughly isotropic cell that ascends on the day-side and descends on the night-side. These conclusions are drawn for both the terrestrial case and the hot Jupiter. To illustrate the utility of the Helmholtz decomposition for studying atmospheric processes, we compute the contribution of each of the circulation components to heat transport from day- to night-side. Surprisingly, we find that the divergent circulation dominates day-night heat transport in the terrestrial case and accounts for around half of the heat transport for the hot Jupiter. The relative contributions of the rotational and divergent components to day-night heat transport are likely sensitive to multiple planetary parameters and atmospheric processes, and merit further study.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا