ﻻ يوجد ملخص باللغة العربية
The energy of the ultrahigh energy spectral cutoff was measured, integrating over the northern hemisphere sky, by the Telescope Array (TA) collaboration, to be $10^{19.78 pm 0.06}$ eV, in agreement with the High Resolution Flys Eye (HiRes) experiment, whereas the Pierre Auger experiment, integrating over the southern hemisphere sky, measured the cutoff to be at 10$^{19.62 pm 0.02}$ eV. An 11% energy scale difference between the TA and Auger does not account for this difference. However, in comparing the spectra of the Telescope Array and Pierre Auger experiments in the band of declination common to both experiments ($-15.7^{circ} < delta < 24.8^{circ}$) we have found agreement in the energy of the spectral cutoff. While the Auger result is essentially unchanged, the TA cutoff energy has changed to $10^{19.59 pm 0.06}$ eV. In this paper we argue that this is an astrophysical effect.
This paper reports on the observation of the sidereal large-scale anisotropy of cosmic rays using data collected by the ARGO-YBJ experiment over 5 years (2008$-$2012). This analysis extends previous work limited to the period from 2008 January to 200
The origin of ultrahigh energy cosmic rays (UHECRs) is an open question. In this proceeding, we first review the general physical requirements that a source must meet for acceleration to 10-100 EeV, including the consideration that the shock is not h
We use a multimessenger approach to constrain realistic mixed composition models of ultrahigh energy cosmic ray sources using the latest cosmic ray, neutrino, and gamma-ray data. We build on the successful Unger-Farrar-Anchordoqui 2015 (UFA15) model
This is a review of the most resent results from the investigation of the Ultrahigh Energy Cosmic Rays, particles of energy exceeding 10$^{18}$ eV. After a general introduction to the topic and a brief review of the lower energy cosmic rays and the d
The sources of ultrahigh-energy cosmic rays (UHECRs) have been difficult to catch. It was recently pointed out that while sources of UHECR protons exhibit anisotropy patterns that become denser and compressed with rising energy, nucleus-emitting-sour