ﻻ يوجد ملخص باللغة العربية
The requirement of high data-rate in the fifth generation wireless systems (5G) calls for the ultimate utilization of the wide bandwidth in the mmWave frequency band. Researchers seeking to compensate for mmWaves high path loss and to achieve both gain and directivity have proposed that mmWave multiple-input multiple-output (MIMO) systems make use of beamforming systems. Hybrid beamforming in mmWave demonstrates promising performance in achieving high gain and directivity by using phase shifters at the analog processing block. What remains a problem, however, is the actual implementation of mmWave beamforming systems; to fabricate such a system is costly and complex. With the aim of reducing such cost and complexity, this article presents actual prototypes of the lens antenna as an effective device to be used in the future 5G mmWave hybrid beamforming systems. Using a lens as a passive phase shifter enables beamforming without the heavy network of active phase shifters, while gain and directivity are achieved by the energy-focusing property of the lens. Proposed in this article are two types of lens antennas, one for static and the other for mobile usage. Their performance is evaluated using measurements and simulation data along with link-level analysis via a software defined radio (SDR) platform. Results show the promising potential of the lens antenna for its high gain and directivity, and its improved beam-switching feasibility compared to when a lens is not used. System-level evaluations reveal the significant throughput enhancement in both real indoor and outdoor environments. Moreover, the lens antennas design issues are also discussed by evaluating different lens sizes.
A reconfigurable intelligent surface (RIS) can shape the radio propagation by passively changing the directions of impinging electromagnetic waves. The optimal control of the RIS requires perfect channel state information (CSI) of all the links conne
Location information offered by external positioning systems, e.g., satellite navigation, can be used as prior information in the process of beam alignment and channel parameter estimation for reconfigurable intelligent surface (RIS)-aided millimeter
MIMO transmit arrays allow for flexible design of the transmit beampattern. However, the large number of elements required to achieve certain performance using uniform linear arrays (ULA) maybe be too costly. This motivated the need for thinned array
Radio frequency (RF) chain circuits play a major role in digital receiver architectures, allowing passband communication signals to be processed in baseband. When operating at high frequencies, these circuits tend to be costly. This increased cost im
A reconfigurable intelligent surface (RIS) can shape the radio propagation environment by virtue of changing the impinging electromagnetic waves towards any desired directions, thus, breaking the general Snells reflection law. However, the optimal co