ترغب بنشر مسار تعليمي؟ اضغط هنا

Commercialization of micro-fabrication of antenna-coupled Transition Edge Sensor bolometer detectors for studies of the Cosmic Microwave Background

98   0   0.0 ( 0 )
 نشر من قبل Aritoki Suzuki
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on the development of commercially fabricated multi-chroic antenna coupled Transition Edge Sensor (TES) bolometer arrays for Cosmic Microwave Background (CMB) polarimetry experiments. CMB polarimetry experiments have deployed instruments in stages. Stage-II experiments deployed with O(1,000) detectors and reported successful detection of B-mode (divergent free) polarization pattern in the CMB. Stage-III experiments have recently started observing with O(10,000) detectors with wider frequency coverage. A concept for a Stage-IV experiment, CMB-S4, is emerging to make a definitive measurement of CMB polarization from the ground with O(400,000) detectors. The orders of magnitude increase in detector count for CMB-S4 requires a new approach in detector fabrication to increase fabrication throughput.and reduce cost. We report on collaborative efforts with two commercial micro-fabrication foundries to fabricate antenna coupled TES bolometer detectors. The detector design is based on the sinuous antenna coupled dichroic detector from the POLARBEAR-2 experiment. The TES bolometers showed the expected I-V response and the RF performance agrees with simulation. We will discuss the motivation, design consideration, fabrication processes, test results, and how industrial detector fabrication could be a path to fabricate hundreds of detector wafers for future CMB polarimetry experiments.



قيم البحث

اقرأ أيضاً

The POLARBEAR-2 CosmicMicrowave Background (CMB) experiment aims to observe B-mode polarization with high sensitivity to explore gravitational lensing of CMB and inflationary gravitational waves. POLARBEAR-2 is an upgraded experiment based on POLARBE AR-1, which had first light in January 2012. For POLARBEAR-2, we will build a receiver that has 7,588 Transition Edge Sensor (TES) bolometers coupled to two-band (95 and 150 GHz) polarization-sensitive antennas. For the large arrays readout, we employ digital frequency-domain multiplexing and multiplex 32 bolometers through a single superconducting quantum interference device (SQUID). An 8-bolometer frequency-domain multiplexing readout has been deployed on POLARBEAR-1 experiment. Extending that architecture to 32 bolometers requires an increase in the bandwidth of the SQUID electronics to 3 MHz. To achieve this increase in bandwidth, we use Digital Active Nulling (DAN) on the digital frequency multiplexing platform. In this paper, we present requirements and improvements on parasitic inductance and resistance of cryogenic wiring and capacitors used for modulating bolometers. These components are problematic above 1 MHz. We also show that our system is able to bias a bolometer in its superconducting transition at 3 MHz.
Mapping the polarization of the Cosmic Microwave Background is yielding exciting data on the origin of the universe, the reionization of the universe, and the growth of cosmic structure. Kilopixel arrays represent the current state of the art, but ad vances in detector technology are needed to enable the larger detector arrays needed for future measurements. Here we present a design for single-band dual-polarization Kinetic Inductance Detectors (KIDs) at 20% bandwidths centered at 145, 220, and 280 GHz. The detection and readout system is nearly identical to the successful photon-noise-limited aluminum Lumped-Element KIDs that have been recently built and tested by some of the authors. Fabricating large focal plane arrays of the feed horns and quarter-wave backshorts requires only conventional precision machining. Since the detectors and readout lines consist only of a single patterned aluminum layer on a SOI wafer, arrays of the detectors can be built commercially or at a standard university cleanroom.
A technological milestone for experiments employing Transition Edge Sensor (TES) bolometers operating at sub-kelvin temperature is the deployment of detector arrays with 100s--1000s of bolometers. One key technology for such arrays is readout multipl exing: the ability to read out many sensors simultaneously on the same set of wires. This paper describes a frequency-domain multiplexed readout system which has been developed for and deployed on the APEX-SZ and South Pole Telescope millimeter wavelength receivers. In this system, the detector array is divided into modules of seven detectors, and each bolometer within the module is biased with a unique ~MHz sinusoidal carrier such that the individual bolometer signals are well separated in frequency space. The currents from all bolometers in a module are summed together and pre-amplified with Superconducting Quantum Interference Devices (SQUIDs) operating at 4 K. Room-temperature electronics demodulate the carriers to recover the bolometer signals, which are digitized separately and stored to disk. This readout system contributes little noise relative to the detectors themselves, is remarkably insensitive to unwanted microphonic excitations, and provides a technology pathway to multiplexing larger numbers of sensors.
The Origins Space Telescope is one of four flagship missions under study for the 2020 Astrophysics Decadal Survey. With a 5.9 m cold (4.5 K) telescope deployed from space, Origins promises unprecedented sensitivity in the near-, mid-, and far-infrare d, from 2.8 - 588 $mu$m. This mandates the use of ultra-sensitive and stable detectors in all of the Origins instruments. At the present, no known detectors can meet Origins stability requirements in the near- to mid-infrared, or its sensitivity requirements in the far-infrared. In this work, we discuss the applicability of transition-edge sensors, as both calorimeters and bolometers, to meet these requirements, and lay out a path toward improving the present state-of-the-art.
The next generation of far infrared space observatories will require extremely sensitive detectors that can be realized only by combining extremely low intrinsic noise with high optical efficiency. We have measured the broad-band optical response of ultra-sensitive TES bolometers (NEP$approx2rm aW/sqrt Hz$) in the 30--60-$murm m$ band where radiation is coupled to the detectors with a few-moded conical feedhorn and a hemispherical backshort. We show that these detectors have an optical efficiency of 60% (the ratio of the power detected by the TES bolometer to the total power propagating through the feedhorn). We find that the measured optical efficiency can be understood in terms of the modes propagating through the feedhorn with the aid of a spatial mode-filtering technique.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا