Orbital state manipulation of a diamond nitrogen-vacancy center using a mechanical resonator


الملخص بالإنكليزية

We study the resonant optical transitions of a single nitrogen-vacancy (NV) center that is coherently dressed by a strong mechanical drive. Using a gigahertz-frequency diamond mechanical resonator that is strain-coupled to an NV centers orbital states, we demonstrate coherent Raman sidebands out to the ninth order and orbital-phonon interactions that mix the two excited-state orbital branches. These interactions are spectroscopically revealed through a multi-phonon Rabi splitting of the orbital branches which scales as a function of resonator driving amplitude, and is successfully reproduced in a quantum model. Finally, we discuss the application of mechanical driving to engineering NV center orbital states.

تحميل البحث