Element abundance ratios of magnesium to neon (Mg/Ne) and neon to oxygen (Ne/O) in the transition region of the quiet Sun have been derived by re-assessing previously published data from the Coronal Diagnostic Spectrometer on board the Solar and Heliospheric Observatory in the light of new atomic data. The quiet Sun Mg/Ne ratio is important for assessing the effect of magnetic activity on the mechanism of the first ionization potential (FIP) effect, while the Ne/O ratio can be used to infer the solar photospheric abundance of neon, which can not be measured directly. The average Mg/Ne ratio is found to be $0.52pm 0.11$, which applies over the temperature region 0.2--0.7~MK, and is consistent with the earlier study. The Ne/O ratio is, however, about 40% larger, taking the value $0.24pm 0.05$ that applies to the temperature range 0.08--0.40~MK. The increase is mostly due to changes in ionization and recombination rates that affect the equilibrium ionization balance. If the Ne/O ratio is interpreted as reflecting the photospheric ratio, then the photospheric neon abundance is $8.08pm 0.09$ or $8.15pm 0.10$ (on a logarithmic scale for which hydrogen is 12), according to whether the oxygen abundances of M.~Asplund et al. or E.~Caffau et al. are used. The updated photospheric neon abundance implies a Mg/Ne FIP bias for the quiet Sun of $1.6pm 0.6$.