In this work, we consider a 3D cubic optical lattice composed of coupled 1D wires with 1D spin-orbit coupling. When the s-wave pairing is induced through Feshbach resonance, the system becomes a topological superfluid with ring nodes, which are the ring nodal degeneracies in the bulk, and supports a large number of surface Majorana zero energy modes. The large number of surface Majorana modes remain at zero energy even in the presence of disorder due to the protection from a chiral symmetry. When the chiral symmetry is broken, the system becomes a Weyl topological superfluid with Majorana arcs. With 3D spin-orbit coupling, the Weyl superfluid becomes a novel gapless phase with spiral Majorana modes on the surface. The spatial resolved radio frequency spectroscopy is suggested to detect this novel nodal ring topological superfluid phase.