ﻻ يوجد ملخص باللغة العربية
Ferroelectric photovoltaic materials are an alternative to semiconductor-based photovoltaics and offer the advantage of above bandgap photovoltage generation. However, there are few known compounds, and photovoltaic efficiencies remain low. Here, we report the discovery of a photovoltaic effect in undoped lead magnesium niobate-lead titanate crystal and a significant improvement in the photovoltaic response under suitable electric fields and temperatures. The photovoltaic effect is maximum near the electric-field-driven ferroelectric dipole reorientation, and increases threefold near the Curie temperature. Moreover, at ferroelectric saturation, the photovoltaic response exhibits clear remanent and transient effects. The transient-remanent combinations together with electric and thermal tuning possibilities indicate photoferroelectric crystals as emerging elements for photovoltaics and optoelectronics, relevant to all-optical information storage and beyond.
Following the recent discovery of a bulk photovoltaic effect in the Pb[(Mg1/3Nb2/3)0.68Ti0.32]O3 crystal, we report here more than one order of magnitude improvement of photovoltaicity as well as its poling dependence in the related composition of le
Single crystals of Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 (PIN-PMN-PT) poled along [001] were investigated by dielectric, x-ray, and polarized light (PLM) and piezo-force microscopy (PFM) methods. PLM revealed {100} macro-domain plates that formed
The temperature dependence of elastic, dielectric, and piezoelectric properties of (65-x)Pb(Mg1/3Nb2/3)O3-xBaTiO335-PbTiO3 ceramics with x=0, 1, 2, 3, and 4 was investigated. Compound with x=2 was found to exhibit a large piezoelectric response (d31=
From the new infrared (IR) reflectivity and time-domain terahertz (THz) spectra combined with available high-frequency dielectric data above the MHz range in a broad temperature range of 10-900 K, a full picture of the soft and central mode behavior
Neutron and x-ray diffraction techniques have been used to study the competing long and short-range polar order in the relaxor ferroelectric Pb(Mg$_{1/3}$Nb$_{2/3}$)O$_{3}$ (PMN) under a [111] applied electric field. Despite reports of a structural t