ﻻ يوجد ملخص باللغة العربية
Recent observations of our neighbouring galaxy M31 have revealed that its disk was shaped by widespread events. The evidence for this includes the high dispersion ($V/sigma$ $le$ 3) of stars older than 2 Gyr, and a global star formation episode, 2-4 Gyr ago. Using the modern hydrodynamical code, GIZMO, we have performed 300 high-resolution simulations to explore the extent to which these observed properties can be explained by a single merger. We find that the observed M31 disk resembles models having experienced a 4:1 merger, in which the nuclei coalesced 1.8-3 Gyr ago, and where the first passage took place 7 to 10 Gyr ago at a large pericentre distance (32 kpc). We also show that within a family of orbital parameters, the Giant Stream (GS) can be formed with various merger mass-ratios, from 2:1 to 300:1. A recent major merger may be the only way to create the very unusual age-dispersion relation in the disk. It reproduces and explains the long-lived 10 kpc ring, the widespread and recent star formation event, the absence of a remnant of the GS progenitor, the apparent complexity of the 3D spatial distribution of the GS, the NE and G Clumps and their formation process, and the observed slope of the halo profile. These modelling successes lead us to propose that the bulk of the substructure in the M31 halo, as well as the complexity of the inner galaxy, may be attributable to a single major interaction with a galaxy that has now fully coalesced with Andromeda.
Although the proximity of the Andromeda galaxy (M31) offers an opportunity to understand how mergers affect galaxies, uncertainty remains about M31s most important mergers. Previous studies focused individually on the giant stellar stream or the impa
Andromeda II (And II) has been known for a few decades but only recently observations have unveiled new properties of this dwarf spheroidal galaxy. The presence of two stellar populations, the bimodal star formation history (SFH) and an unusual rotat
We have used hydrodynamical simulations to model the formation of the closest giant elliptical galaxy, Centaurus A. We find that a single major merger event with a mass ratio up to 1.5, and which has happened ~2 Gyr ago, is able to reproduce many of
Moderately strong shocks arise naturally when two subclusters merge. For instance, when a smaller subcluster falls into the gravitational potential of a more massive cluster, a bow shock is formed and moves together with the subcluster. After pericen
The simultaneous advancement of high resolution integral field unit spectroscopy and robust full-spectral fitting codes now make it possible to examine spatially-resolved kinematic, chemical composition, and star-formation history from nearby galaxie