ﻻ يوجد ملخص باللغة العربية
Assume that a bounded scatterer is embedded into an infinite homogeneous isotropic background medium in two dimensions. The refractive index function is supposed to be piecewise constant. If the scattering interface contains a weakly or strongly singular point, we prove that the scattered field cannot vanish identically. This particularly leads to the absence of non-scattering energies for piecewise analytic interfaces with a weakly singular point. Local uniqueness is obtained for shape identification problems in inverse medium scattering with a single far-field pattern.
It is proved that an inhomogeneous medium whose boundary contains a weakly singular point of arbitrary order scatters every incoming wave. Similarly, a compactly supported source term with weakly singular points on the boundary always radiates acoust
In this paper, we consider the transmission eigenvalue problem associated with a general conductive transmission condition and study the geometric structures of the transmission eigenfunctions. We prove that under a mild regularity condition in terms
We study the singular perturbation of an elastic energy with a singular weight. The minimization of this energy results in a multi-scale pattern formation. We derive an energy scaling law in terms of the perturbation parameter and prove that, althoug
We develop in this note the tools of regularity structures to deal with singular stochastic PDEs that involve non-translation invariant differential operators. We describe in particular the renormalised equation for a very large class of spacetime dependent renormalization schemes.
The notion of singular reduction operators, i.e., of singular operators of nonclassical (conditional) symmetry, of partial differential equations in two independent variables is introduced. All possible reductions of these equations to first-order OD