ترغب بنشر مسار تعليمي؟ اضغط هنا

High-resolution imaging and near-infrared spectroscopy of penumbral decay

133   0   0.0 ( 0 )
 نشر من قبل Meetu Verma Dr.
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Combining high-resolution spectropolarimetric and imaging data is key to understanding the decay process of sunspots as it allows us scrutinizing the velocity and magnetic fields of sunspots and their surroundings. Active region NOAA 12597 was observed on 24/09/2016 with the 1.5-m GREGOR solar telescope using high-spatial resolution imaging as well as imaging spectroscopy and near-infrared (NIR) spectropolarimetry. Horizontal proper motions were estimated with LCT, whereas LOS velocities were computed with spectral line fitting methods. The magnetic field properties were inferred with the SIR code for the Si I and Ca I NIR lines. At the time of the GREGOR observations, the leading sunspot had two light-bridges indicating the onset of its decay. One of the light-bridges disappeared, and an elongated, dark umbral core at its edge appeared in a decaying penumbral sector facing the newly emerging flux. The flow and magnetic field properties of this penumbral sector exhibited weak Evershed flow, moat flow, and horizontal magnetic field. The penumbral gap adjacent to the elongated umbral core and the penumbra in that penumbral sector displayed LOS velocities similar to granulation. The separating polarities of a new flux system interacted with the leading and central part of the already established active region. As a consequence, the leading spot rotated 55-degree in clockwise direction over 12 hours. In the high-resolution observations of a decaying sunspot, the penumbral filaments facing flux emergence site contained a darkened area resembling an umbral core filled with umbral dots. This umbral core had velocity and magnetic field properties similar to the sunspot umbra. This implies that the horizontal magnetic fields in the decaying penumbra became vertical as observed in flare-induced rapid penumbral decay, but on a very different time-scale.



قيم البحث

اقرأ أيضاً

68 - Andrea Dupree 2018
We present results from a near infrared survey of the He I line (10830 Angstrom) in cool dwarf stars taken with the PHOENIX spectrograph at the 4-m Mayall telescope at Kitt Peak National Observatory. Spectral synthesis of this region reproduces some but not all atomic and molecular features. The equivalent width of the He line appears directly correlated with the soft X-ray stellar surface flux except among the coolest M dwarf stars, where the helium is surprisingly weak.
Studies of transiting extrasolar planets are of key importance for understanding the nature of planets outside our solar system because their masses, diameters, and bulk densities can be measured. An important part of transit-search programmes is the removal of false-positives. The critical question is how many of the candidates that passed all previous tests are false positives. For our study we selected 25 CoRoT candidates that have already been screened against false-positives using detailed analysis of the light curves and seeing-limited imaging, which has transits that are between 0.7 and 0.05% deep. We observed 20 candidates with the adaptive optics imager NaCo and 18 with the high-resolution infrared spectrograph CRIRES. We found previously unknown stars within 2 arcsec of the targets in seven of the candidates. All of these are too faint and too close to the targets to have been previously detected with seeing-limited telescopes in the optical. Our study thus leads to the surprising results that if we remove all candidates excluded by the sophisticated analysis of the light-curve, as well as carrying out deep imaging with seeing-limited telescopes, still 28-35% of the remaining candidates are found to possess companions that are bright enough to be false-positives. Given that the companion-candidates cluster around the targets and that the J-K colours are consistent with physical companions, we conclude that the companion-candidates are more likely to be physical companions rather than unrelated field stars.
256 - Sasha Hinkley 2012
We present adaptive optics photometry and spectra in the JHKL-bands along with high spectral resolution K-band spectroscopy for each component of the Z Canis Majoris system. Our high angular resolution photometry of this very young (<1 Myr) binary, c omprised of an FU Ori object and a Herbig Ae/Be star, were gathered shortly after the 2008 outburst while our high resolution spectroscopy was gathered during a quiescent phase. Our photometry conclusively determine that the outburst was due solely to the embedded Herbig Ae/Be member, supporting results from earlier works, and that the optically visible FU Ori component decreased slightly (~30%) in luminosity during the same period, consistent with previous works on the variability of FU Ori type systems. Further, our high-resolution K-band spectra definitively demonstrate that the 2.294 micron CO absorption feature seen in composite spectra of the system is due solely to the FU Ori component, while a prominent CO emission feature at the same wavelength, long suspected to be associated with the innermost regions of a circumstellar accretion disk, can be assigned to the Herbig Ae/Be member. These findings are in contrast to previous analyses (e.g. Malbet et al 2010, Benisty et al. 2010) of this complex system which assigned the CO emission to the FU Ori component.
HD~100546 is a Herbig Ae/Be star surrounded by a disk with a large central region that is cleared of gas and dust (i.e., an inner hole). High-resolution near-infrared spectroscopy reveals a rich emission spectrum of fundamental ro-vibrational CO emis sion lines whose time variable properties point to the presence of an orbiting companion within the hole. The Doppler shift and spectroastrometric signal of the CO v=1-0 P26 line, observed from 2003 to 2013, are consistent with a source of excess CO emission that orbits the star near the inner rim of the disk. The properties of the excess emission are consistent with those of a circumplanetary disk. In this paper, we report follow up observations that confirm our earlier prediction that the orbiting source of excess emission would disappear behind the near side of the inner rim of the outer disk in 2017. We find that while the hotband CO lines remained unchanged in 2017, the v=1-0 P26 line and its spectroastrometric signal returned to the profile observed in 2003. With these new observations, we further constrain the origin of the emission and discuss possible ways of confirming the presence of an orbiting planetary companion in the inner disk.
Sunspot observations in chromospheric spectral lines have revealed the existence of short-lived linear bright transients, commonly referred to as penumbral micro-jets (PMJs). Details on the origin and physical nature of PMJs are to large extend still unkown. We aim to characterize the dynamical nature of PMJs to provide guidance for future modelling efforts. We analyze high spatial (0.1 arcsec) and temporal resolution (1 s) Ca II H filtergram (0.1 nm bandwidth) observations of a sunspot obtained on two consecutive days with the Swedish 1-m Solar Telescope. We find that PMJs appear to be the rapid brightening of an already existing (faint) fibril. The rapid brightening is the fast increase (typically less than 10 s) in intensity over significant length (several 100s of km) of the existing fibril. For most PMJs, we cannot identify a clear root or source from where the brightening appears to originate. After the fast onset, about half of the PMJs have a top that is moving with an apparent velocity between 5 and 14 km/s, most of them upwards. For the other PMJs, there is no significant motion of the top. For about a third of the PMJs we observe a splitting into two parallel and co-evolving linear features during the later phases of the lifetime of the PMJ. We conclude that mass flows can play only limited role in the onset phase of PMJs and that it is more likely that we see the effect of a fast heating front.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا