Novel Double Triple Bend Achromat (DTBA) lattice design for a next generation 3 GeV Synchrotron Light Source


الملخص بالإنكليزية

The Double Triple Bend Achromat (DTBA) lattice~cite{DTBAipac16} is a novel lattice design for a next generation 3 GeV Synchrotron Light Source. Starting from a modification of the Hybrid Multi Bend Achromat (HMBA) lattice~cite{ESRF} developed at ESRF and inspired by the Double-Double Bend Achromat (DDBA) lattice~cite{Diamond1, Diamond2} developed at Diamond, DTBA combines the advantages of both cells. The typical MBA lattice cells have one straight section dedicated to an insertion device, whereas this new cell layout has two such drifts, thus increasing the fraction of available space for the installation of insertion devices. The DTBA lattice achieves an emittance of $simmathrm{132~pm}$, a dynamic aperture of $mathrm{simpm10pm1~mm}$ (calculated at the injection point), an injection efficiency of $mathrm{simmathrm88pm5%}$ and a lifetime of $mathrm{1.4pm0.2~h}$ with errors. The characteristics of DTBA, the methodology and results of the linear and non-linear optics optimisations, with and without the presence of errors, are presented in detail.

تحميل البحث