ترغب بنشر مسار تعليمي؟ اضغط هنا

On the inherent competition between valid and spurious inductive inferences in Boolean data

51   0   0.0 ( 0 )
 نشر من قبل Mircea Andrecut Dr
 تاريخ النشر 2018
والبحث باللغة English
 تأليف M. Andrecut




اسأل ChatGPT حول البحث

Inductive inference is the process of extracting general rules from specific observations. This problem also arises in the analysis of biological networks, such as genetic regulatory networks, where the interactions are complex and the observations are incomplete. A typical task in these problems is to extract general interaction rules as combinations of Boolean covariates, that explain a measured response variable. The inductive inference process can be considered as an incompletely specified Boolean function synthesis problem. This incompleteness of the problem will also generate spurious inferences, which are a serious threat to valid inductive inference rules. Using random Boolean data as a null model, here we attempt to measure the competition between valid and spurious inductive inference rules from a given data set. We formulate two greedy search algorithms, which synthesize a given Boolean response variable in a sparse disjunct normal form, and respectively a sparse generalized algebraic normal form of the variables from the observation data, and we evaluate numerically their performance.



قيم البحث

اقرأ أيضاً

A theory of additive Markov chains with long-range memory is used for description of correlation properties of coarse-grained literary texts. The complex structure of the correlations in texts is revealed. Antipersistent correlations at small distanc es, L < 300, and persistent ones at L > 300 define this nontrivial structure. For some concrete examples of literary texts, the memory functions are obtained and their power-law behavior at long distances is disclosed. This property is shown to be a cause of self-similarity of texts with respect to the decimation procedure.
We introduce a contrarian opinion (CO) model in which a fraction p of contrarians within a group holds a strong opinion opposite to the opinion held by the rest of the group. At the initial stage, stable clusters of two opinions, A and B exist. Then we introduce contrarians which hold a strong B opinion into the opinion A group. Through their interactions, the contrarians are able to decrease the size of the largest A opinion cluster, and even destroy it. We see this kind of method in operation, e.g when companies send free new products to potential customers in order to convince them to adopt the product and influence others. We study the CO model, using two different strategies, on both ER and scale-free networks. In strategy I, the contrarians are positioned at random. In strategy II, the contrarians are chosen to be the highest degrees nodes. We find that for both strategies the size of the largest A cluster decreases to zero as p increases as in a phase transition. At a critical threshold value p_c the system undergoes a second-order phase transition that belongs to the same universality class of mean field percolation. We find that even for an ER type model, where the degrees of the nodes are not so distinct, strategy II is significantly more effctive in reducing the size of the largest A opinion cluster and, at very small values of p, the largest A opinion cluster is destroyed.
In this work we investigate the origin of the parabolic relation between skewness and kurtosis often encountered in the analysis of experimental time-series. We argue that the numerical values of the coefficients of the curve may provide informations about the specific physics of the system studied, whereas the analytical curve per se is a fairly general consequence of a few constraints expected to hold for most systems.
326 - Peter Sunehag 2007
We define an entropy based on a chosen governing probability distribution. If a certain kind of measurements follow such a distribution it also gives us a suitable scale to study it with. This scale will appear as a link function that is applied to t he measurements. A link function can also be used to define an alternative structure on a set. We will see that generalized entropies are equivalent to using a different scale for the phenomenon that is studied compared to the scale the measurements arrive on. An extensive measurement scale is here a scale for which measurements fulfill a memoryless property. We conclude that the alternative algebraic structure defined by the link function must be used if we continue to work on the original scale. We derive Tsallis entropy by using a generalized log-logistic governing distribution. Typical applications of Tsallis entropy are related to phenomena with power-law behaviour.
While designing inductive bias in neural architectures has been widely studied, we hypothesize that transformer networks are flexible enough to learn inductive bias from suitable generic tasks. Here, we replace architecture engineering by encoding in ductive bias in the form of datasets. Inspired by Peirces view that deduction, induction, and abduction form an irreducible set of reasoning primitives, we design three synthetic tasks that are intended to require the model to have these three abilities. We specifically design these synthetic tasks in a way that they are devoid of mathematical knowledge to ensure that only the fundamental reasoning biases can be learned from these tasks. This defines a new pre-training methodology called LIME (Learning Inductive bias for Mathematical rEasoning). Models trained with LIME significantly outperform vanilla transformers on three very different large mathematical reasoning benchmarks. Unlike dominating the computation cost as traditional pre-training approaches, LIME requires only a small fraction of the computation cost of the typical downstream task.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا