ترغب بنشر مسار تعليمي؟ اضغط هنا

Performance study of SKIROC2/A ASIC for ILD Si-W ECAL

57   0   0.0 ( 0 )
 نشر من قبل Taikan Suehara
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The ILD Si-W ECAL is a sampling calorimeter with tungsten absorber and highly segmented silicon layers for the International Large Detector (ILD), one of the two detector concepts for the International Linear Collider. SKIROC2 is an ASIC for the ILD Si-WECAL. To investigate the issues found in prototype detectors, we prepared dedicated ASIC evaluation boards with either BGA sockets or directly soldered SKIROC2. We report a performance study with the evaluation boards, including signal-to-noise ratio and TDC performance with comparing SKIROC2 and an updated version, SKIROC2A.



قيم البحث

اقرأ أيضاً

The International Large Detector (ILD) is a proposed detector for the International Linear Collider (ILC). It has been designed to achieve an excellent jet energy resolution by using Particle Flow Algorithms (PFA), which rely on the ability to separa te nearby particles within jets. PFA requires calorimeters with high granularity. The ILD Electromagnetic Calorimeter (ECAL) is a sampling calorimeter with thirty tungsten absorber layers. The total thickness of this ECAL is about 24 X$_0$, and it has between 10 and 100 million channels to make high granularity. Silicon sensors are a candidate technology for the sensitive layers of this ECAL. Present prototypes of these sensors have 256 5.5$times$5.5 mm$^2$ pixels in an area of 9$times$9 cm$^2$.We have measured various properties of these prototype sensors: the leakage current, capacitance, and full depletion voltage. We have also examined the response to an infrared laser to understand the sensors response at its edge and between pixel readout pads, as well the effect of different guard ring designs. In this paper, we show results from these measurements and discuss future works.
International Large Detector (ILD) adopts Particle Flow Algorithm (PFA) for precise measurement of multiple jets. The electromagnetic calorimeter (ECAL) of ILD has two candidates sensor technologies for PFA, which are pixelized silicon sensors and sc intillator-strips with silicon photomultipliers. Pixelized silicon sensors have higher granularity for PFA, however they have an issue of cost reduction. In contrast, scintillator-strips have an advantage of relatively low cost and a disadvantage of degradation of position resolution by ghost hits, which are generated by orthogonal arrangement. Hybrid ECAL using both candidates is proposed to supplement these disadvantages. In this paper, we report an optimization study of the hybrid ECAL using detector simulation.
65 - I. Sekiya , H. Hirai , T. Suehara 2017
SKIROC2 is an ASIC to readout the silicon pad detectors for the electromagnetic calorimeter in the International Linear Collider. Characteristics of SKIROC2 and the new version of SKIROC2A, packaged with BGA, are measured with testboards and charge i njection. The results on the signal-to-noise ratio of both trigger and ADC output, threshold tuning capability and timing resolution are presented.
Excellent jet energy measurement is important at the International Linear Collider (ILC) because most of interesting physics processes decay into multi-jet final states. We employ a particle flow method to reconstruct particles, hence International L arge Detector (ILD) needs high spatial resolution which can separate each particle in jets. We study pixelized silicon sensors as active material of ILD Silicon electro- magnetic calorimeter (SiECAL). This paper reports studies of temperature and humidity dependence on dark current and response of laser injection.
A detailed investigation of hadronic interactions is performed using $pi^-$-mesons with energies in the range 2--10 GeV incident on a high granularity silicon-tungsten electromagnetic calorimeter. The data were recorded at FNAL in 2008. The region in which the $pi^-$-mesons interact with the detector material and the produced secondary particles are characterised using a novel track-finding algorithm that reconstructs tracks within hadronic showers in a calorimeter in the absence of a magnetic field. The principle of carrying out detector monitoring and calibration using secondary tracks is also demonstrated.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا