ﻻ يوجد ملخص باللغة العربية
In the study of free arrangements, the most useful result to construct/check free arrangements is the addition-deletion theorem. Recently, the multiple version of the addition theorem is proved, called the multiple addition theorem (MAT) to prove the ideal-free theorem. The aim of this article is to give the deletion version of MAT, the multiple deletion theorem (MDT). Also, we can generalize MAT from the viewpoint of our new proof. Moreover, we introduce their restriction version, a multiple restriction theorem (MRT). Applications of them including the combinatorial freeness of the extended Catalan arrangements are given.
We show that the deletion theorem of a free arrangement is combinatorial, i.e., whether we can delete a hyperplane from a free arrangement keeping freeness depends only on the intersection lattice. In fact, we give an explicit sufficient and necessar
In the theory of hyperplane arrangements, the most important and difficult problem is the combinatorial dependency of several properties. In this atricle, we prove that Teraos celebrated addition-deletion theorem for free arrangements is combinatoria
In this article, we study the weak and strong Lefschetz properties, and the related notion of almost revlex ideal, in the non-Artinian case, proving that several results known in the Artinian case hold also in this more general setting. We then apply
We endow the set of isomorphic classes of matroids with a new Hopf algebra structure, in which the coproduct is implemented via the combinatorial operations of restriction and deletion. We also initiate the investigation of dendriform coalgebra struc
We establish a general theory for projective dimensions of the logarithmic derivation modules of hyperplane arrangements. That includes the addition-deletion and restriction theorem, Yoshinaga-type result, and the division theorem for projective dime