ﻻ يوجد ملخص باللغة العربية
In strongly correlated organic materials it has been pointed out that charge-ordering could also achieve electronic ferroelectricity at the same critical temperature $T_{co}$. A prototype of such phenomenon are the quasi-one dimensional (TMTTF)$_2X$ Fabre-salts. However, the stabilization of a long-range ferroelectric ground-state below $T_{co}$ requires the break of inversion symmetry, which should be accompanied by a lattice deformation. In this work we investigate the role of the monovalent counter-anion $X$ in such mechanism. For this purpose, we measured the quasi-static dielectric constant along the $c^{*}$-axis direction, where layers formed by donors and anions alternate. Our findings show that the ionic charge contribution is three orders of magnitude lower than the intra-stack electronic response. The $c^{*}$ dielectric constant ($epsilon_{c^*}$) probes directly the charge response of the monovalent anion $X$, since the anion mobility in the structure should help to stabilize the ferroelectric ground-state. Furthermore, our $epsilon_{c^*}$ measurements %conjugated with earlier investigations of the $c^*$ lattice thermal expansion, show that the dielectric response is thermally broaden below $T_{co}$ if the ferroelectric transition occurs in the temperature range where the anion movement begin to freeze in their methyl groups cavity. In the extreme case of the PF$_6$-H$_{12}$ salt, where $T_{co}$ occurs at the freezing point, a relaxor-type ferroelectricity is observed. Also, because of the slow kinetics of the anion sub-lattice, global hysteresis effects and reduction of the charge response upon successive cycling are observed. In this context, we propose that anions control the order-disorder or relaxation character of the ferroelectric transition of the Fabre-salts.
The crystal structures of the quasi-one-dimensional organic salts (TMTTF)$_2$PF$_6$ and (TMTSF)$_2$PF$_6$ were studied by pressure-dependent x-ray diffraction up to 10 GPa at room temperature. The unit-cell parameters exhibit a clear anomaly due to a
We investigate the phases of the ionic Hubbard model in a two-dimensional square lattice using determinant quantum Monte Carlo (DQMC). At half-filling, when the interaction strength or the staggered potential dominate we find Mott and band insulators
We investigate paramagnetic metal-insulator transitions in the infinite-dimensional ionic Hubbard model at finite temperatures. By means of the dynamical mean-field theory with an impurity solver of the continuous-time quantum Monte Carlo method, we
We report the discovery of a complete suppression of ferroelectricity in $MnWO_4$ by 10 % iron substitution and its restoration in external magnetic fields. The spontaneous polarization in $Mn_{0.9}Fe_{0.1}WO_4$ arises below 12 K in external fields a
We study the phase diagram of the ionic Hubbard model (IHM) at half-filling using dynamical mean field theory (DMFT), with two impurity solvers, namely, iterated perturbation theory (IPT) and continuous time quantum Monte Carlo (CTQMC). The physics o