ترغب بنشر مسار تعليمي؟ اضغط هنا

Newton-Okounkov polytopes of Bott-Samelson varieties as Minkowski sums

86   0   0.0 ( 0 )
 نشر من قبل Valentina Kiritchenko
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We compute the Newton--Okounkov bodies of line bundles on a Bott--Samelson resolution of the complete flag variety of $GL_n$ for a geometric valuation coming from a flag of translated Schubert subvarieties. The Bott--Samelson resolution corresponds to the decomposition $(s_1)(s_2s_1)(s_3s_2s_1)(ldots)(s_{n-1}ldots s_1)$ of the longest element in the Weyl group, and the Schubert subvarieties correspond to the terminal subwords in this decomposition. We prove that the resulting Newton--Okounkov polytopes for semiample line bundles satisfy the additivity property with respect to the Minkowski sum. In particular, they are Minkowski sums of Newton--Okounkov polytopes of line bundles on the complete flag varieties for $GL_2$,ldots, $GL_{n}$.



قيم البحث

اقرأ أيضاً

We compute the Newton--Okounkov bodies of line bundles on the complete flag variety of GL_n for a geometric valuation coming from a flag of translated Schubert subvarieties. The Schubert subvarieties correspond to the terminal subwords in the decompo sition (s_1)(s_2s_1)(s_3s_2s_1)(...)(s_{n-1}...s_1) of the longest element in the Weyl group. The resulting Newton--Okounkov bodies coincide with the Feigin--Fourier--Littelmann--Vinberg polytopes in type A.
For classical groups SL(n), SO(n) and Sp(2n), we define uniformly geometric valuations on the corresponding complete flag varieties. The valuation in every type comes from a natural coordinate system on the open Schubert cell and is combinatorially r elated to the Gelfand-Zetlin pattern in the same type. In types A and C, we identify the corresponding Newton-Okounkov polytopes with the Feigin-Fourier-Littelmann-Vinberg polytopes. In types B and D, we compute low-dimensional examples and formulate open questions.
A Newton-Okounkov polytope of a complete flag variety can be turned into a convex geometric model for Schubert calculus. Namely, we can represent Schubert cycles by linear combinations of faces of the polytope so that the intersection product of cycl es corresponds to the set-theoretic intersection of faces (whenever the latter are transverse). We explain the general framework and survey particular realizations of this approach in types A, B and C.
In the framework of the problem of characterizing complete flag manifolds by their contractions, the complete flags of type $F_4$ and $G_2$ satisfy the property that any possible tower of Bott-Samelson varieties dominating them birationally deforms i n a nontrivial moduli. In this paper we illustrate the fact that, at least in some cases, these deformations can be explained in terms of automorphisms of Schubert varieties, providing variations of certain isotropic structures on them. As a corollary, we provide a unified and completely algebraic proof of the characterization of complete flag manifolds in terms of their contractions.
535 - Boris Pasquier 2008
We use the toric degeneration of Bott-Samelson varieties and the description of cohomolgy of line bundles on toric varieties to deduce vanishings results for the cohomology of lines bundles on Bott-Samelson varieties.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا