ﻻ يوجد ملخص باللغة العربية
We constrain theories of a massive spin-2 particle coupled to a massless spin-2 particle by demanding the absence of a time advance in eikonal scattering. This is an $S$-matrix consideration that leads to model-independent constraints on the cubic vertices present in the theory. Of the possible cubic vertices for the two spin-2 particles, the requirement of subluminality leaves a particular linear combination of cubic vertices of the Einstein--Hilbert type. Either the cubic vertices must appear in this combination or new physics must enter at a scale parametrically the same as the mass of the massive spin-2 field. These conclusions imply that there is a one-parameter family of ghost-free bimetric theories of gravity that are consistent with subluminal scattering. When both particles couple to additional matter, subluminality places additional constraints on the matter couplings. We additionally reproduce these constraints by considering classical scattering off of a shockwave background in the ghost-free bimetric theory.
We place model-independent constraints on theories of massive spin-2 particles by considering the positivity of the phase shift in eikonal scattering. The phase shift is an asymptotic $S$-matrix observable, related to the time delay/advance experienc
We consider scattering of massless higher-spin particles in the eikonal regime in four dimensions. By demanding the absence of asymptotic superluminality, corresponding to positivity of the eikonal phase, we place constraints on the possible cubic co
We provide a systematic and comprehensive derivation of the linearized dynamics of massive and partially massless spin-2 particles in a Schwarzschild (anti) de Sitter black hole background, in four and higher spacetime dimensions. In particular, we s
There are various no-go results forbidding self-interactions for a single partially massless spin-2 field. Given the photon-like structure of the linear partially massless field, it is natural to ask whether a multiplet of such fields can interact un
We consider the scattering of massless particles coupled to an abelian gauge field in 2n-dimensional Minkowski spacetime. Weinbergs soft photon theorem is recast as Ward identities for infinitely many new nontrivial symmetries of the massless QED S-m