ﻻ يوجد ملخص باللغة العربية
Relativizing computations of Turing machines to an oracle is a central concept in the theory of computation, both in complexity theory and in computability theory(!). Inspired by lowness notions from computability theory, Allender introduced the concept of low for speed oracles. An oracle A is low for speed if relativizing to A has essentially no effect on computational complexity, meaning that if a decidable language can be decided in time $f(n)$ with access to oracle A, then it can be decided in time poly(f(n)) without any oracle. The existence of non-computable such As was later proven by Bayer and Slaman, who even constructed a computably enumerable one, and exhibited a number of properties of these oracles as well as interesting connections with computability theory. In this paper, we pursue this line of research, answering the questions left by Bayer and Slaman and give further evidence that the structure of the class of low for speed oracles is a very rich one.
A classic result in algorithmic information theory is that every infinite binary sequence is computable from a Martin-Loef random infinite binary sequence. Proved independently by Kucera and Gacs, this result answered a question by Charles Bennett an
The aim of this short note is mainly pedagogical. It summarizes some knowledge about Boolean satisfiability (SAT) and the P=NP? problem in an elementary mathematical language. A convenient scheme to visualize and manipulate CNF formulae is introduced
We prove that every key agreement protocol in the random oracle model in which the honest users make at most $n$ queries to the oracle can be broken by an adversary who makes $O(n^2)$ queries to the oracle. This improves on the previous $widetilde{Om
For random CNF formulae with m clauses, n variables and an unrestricted number of literals per clause the transition from high to low satisfiability can be determined exactly for large n. The critical density m/n turns out to be strongly n-dependent,
A heuristic model procedure for determining satisfiability of CNF-formulae is set up and described by nonlinear recursion relations for m (number of clauses), n (number of variables) and clause filling k. The system mimicked by the recursion undergoe