Exploring Zeptosecond Quantum Equilibration Dynamics: From Deep-Inelastic to Fusion-Fission Outcomes in $^{58}$Ni+$^{60}$Ni Reactions


الملخص بالإنكليزية

Energy dissipative processes play a key role in how quantum many-body systems dynamically evolve towards equilibrium. In closed quantum systems, such processes are attributed to the transfer of energy from collective motion to single-particle degrees of freedom; however, the quantum many-body dynamics of this evolutionary process are poorly understood. To explore energy dissipative phenomena and equilibration dynamics in one such system, an experimental investigation of deep-inelastic and fusion-fission outcomes in the $^{58}$Ni+$^{60}$Ni reaction has been carried out. Experimental outcomes have been compared to theoretical predictions using Time Dependent Hartree Fock and Time Dependent Random Phase Approximation approaches, which respectively incorporate one-body energy dissipation and fluctuations. Excellent quantitative agreement has been found between experiment and calculations, indicating that microscopic models incorporating one-body dissipation and fluctuations provide a potential tool for exploring dissipation in low-energy heavy ion collisions.

تحميل البحث