ﻻ يوجد ملخص باللغة العربية
Energy dissipative processes play a key role in how quantum many-body systems dynamically evolve towards equilibrium. In closed quantum systems, such processes are attributed to the transfer of energy from collective motion to single-particle degrees of freedom; however, the quantum many-body dynamics of this evolutionary process are poorly understood. To explore energy dissipative phenomena and equilibration dynamics in one such system, an experimental investigation of deep-inelastic and fusion-fission outcomes in the $^{58}$Ni+$^{60}$Ni reaction has been carried out. Experimental outcomes have been compared to theoretical predictions using Time Dependent Hartree Fock and Time Dependent Random Phase Approximation approaches, which respectively incorporate one-body energy dissipation and fluctuations. Excellent quantitative agreement has been found between experiment and calculations, indicating that microscopic models incorporating one-body dissipation and fluctuations provide a potential tool for exploring dissipation in low-energy heavy ion collisions.
The $E0$ transition strength in the $2^+_2 rightarrow 2^+_1$ transitions of $^{58,60,62}$Ni have been determined for the first time following a series of measurements at the Australian National University (ANU) and the University of Kentucky (UK). Th
Isospin diffusion is probed as a function of the dissipated energy by studying two systems $^{58}$Ni+$^{58}$Ni and $^{58}$Ni+$^{197}$Au, over the incident energy range 52-74AM. Experimental data are compared with the results of a microscopic transpor
We present a high-resolution in-beam $gamma$-ray spectroscopy study of excited states in the mirror nuclei $^{55}$Co and $^{55}$Ni following one-nucleon knockout from a projectile beam of $^{56}$Ni. The newly determined partial cross sections and the
We present a new experimental method to correlate the isotopic composition of intermediate mass fragments (IMF) emitted at mid-rapidity in semi-peripheral collisions with the emission timescale: IMFs emitted in the early stage of the reaction show la
Spectroscopic information has been extracted on the hole-states of $^{55}$Ni, the least known of the quartet of nuclei ($^{55}$Ni, $^{57}$Ni, $^{55}$Co and $^{57}$Co), one neutron away from $^{56}$Ni, the N=Z=28 double magic nucleus. Using the $^{1}$