ﻻ يوجد ملخص باللغة العربية
We present the fundamental properties of 87 stars based on angular diameter measurements from the Navy Precision Optical Interferometer, 36 of which have not been measured previously using interferometry. Our sample consists of 5 dwarfs, 3 subgiants, 69 giants, 3 bright giants, and 7 supergiants, and span a wide range of spectral classes from B to M. We combined our angular diameters with photometric and distance information from the literature to determine each stars physical radius, effective temperature, bolometric flux, luminosity, mass, and age.
Visible-light long baseline interferometry holds the promise of advancing a number of important applications in fundamental astronomy, including the direct measurement of the angular diameters and oblateness of stars, and the direct measurement of th
Stellar models applied to large stellar surveys of the Milky Way need to be properly tested against a sample of stars with highly reliable fundamental stellar parameters. We have established a program aiming to deliver such a sample. We present new f
Benchmark stars are crucial as validating standards for current as well as future large stellar surveys of the Milky Way. However, the number of suitable metal-poor benchmarks is currently limited. We aim to construct a new set of metal-poor benchmar
Seismology of stars that exhibit solar-like oscillations develops a growing interest with the wealth of observational results obtained with the CoRoT and Kepler space-borne missions. In this framework, relations between asteroseismic quantities and s
Large exoplanet surveys have successfully detected thousands of exoplanets to-date. Utilizing these detections and non-detections to constrain our understanding of the formation and evolution of planetary systems also requires a detailed understandin