Electrically Pumped Orbital Angular Momentum (OAM) Laser at Telecom Wavelengths


الملخص بالإنكليزية

Semiconductor lasers capable of generating a vortex beam with a specific orbital angular momentum (OAM) order are highly attractive for applications ranging from nanoparticle manipulation, imaging and microscopy to fibre and quantum communications. In this work, an electrically pumped OAM laser operating at telecom wavelengths is fabricated by monolithically integrating an optical vortex emitter with a distributed feedback (DFB) laser on the same InGaAsP/InP epitaxial wafer. A single-step dry etching process is adopted to complete the OAM emitter, equipped with specially designed top gratings. The vortex beam emitted by the integrated laser is captured, and its OAM mode purity characterized. The electrically pumped OAM laser eliminates the external laser required by silicon- or silicon-on-insulator (SOI)-based OAM emitters, thus demonstrating great potential for applications in communication systems and quantum domain.

تحميل البحث