ترغب بنشر مسار تعليمي؟ اضغط هنا

Direct Lyman continuum and Lyman-alpha escape observed at redshift 4

93   0   0.0 ( 0 )
 نشر من قبل Eros Vanzella
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on the serendipitous discovery of a z=4.0, M1500=-22.20 star-forming galaxy (Ion3) showing copious Lyman continuum (LyC) leakage (~60% escaping), a remarkable multiple peaked Lya emission, and significant Lya radiation directly emerging at the resonance frequency. This is the highest redshift confirmed LyC emitter in which the ionising and Lya radiation possibly share a common ionised cavity (with N_HI<10^17.2 cm^-2). Ion3 is spatially resolved, it shows clear stellar winds signatures like the P-Cygni NV1240 profile, and has blue ultraviolet continuum (beta = -2.5 +/- 0.25, F_lambda~ lambda^beta) with weak low-ionisation interstellar metal lines. Deep VLT/HAWKI Ks and Spitzer/IRAC 3.6um and 4.5um imaging show a clear photometric signature of the Halpha line with equivalent width of 1000A rest-frame emerging over a flat continuum (Ks-4.5um ~ 0). From the SED fitting we derive a stellar mass of 1.5x10^9 Msun, SFR of 140 Msun/yr and age of ~10 Myr, with a low dust extinction, E(B-V)< 0.1, placing the source in the starburst region of the SFR-M^* plane. Ion3 shows similar properties of another LyC emitter previously discovered (z=3.21, Ion2, Vanzella et al. 2016). Ion3 (and Ion2) represents ideal high-redshift reference cases to guide the search for reionising sources at z>6.5 with JWST.



قيم البحث

اقرأ أيضاً

Identifying the mechanisms driving the escape of Lyman Continuum (LyC) photons is crucial to find Lyman Continuum Emitter (LCE) candidates. To understand the physical properties involved in the leakage of LyC photons, we investigate the connection be tween the HI covering fraction, HI velocity width, the Lyman alpha (LyA) properties and escape of LyC photons in a sample of 22 star-forming galaxies including 13 LCEs. We fit the stellar continua, dust attenuation, and absorption lines between 920 and 1300 A to extract the HI covering fractions and dust attenuation. Additionally, we measure the HI velocity widths of the optically thick Lyman series and derive the LyA equivalent widths (EW), escape fractions (fesc), peak velocities and fluxes at the minimum of the LyA profiles. Overall, we highlight strong correlations between the presence of low HI covering fractions and (1) low LyA peak velocities; (2) more flux at the profile minimum; and (3) larger EW(LyA), fesc(LyA), and fesc(LyC). Hence, low column density channels are crucial ISM ingredients for the leakage of LyC and LyA photons. Additionally, galaxies with narrower HI absorption velocity widths have higher LyA equivalent widths, larger LyA escape fractions, and lower LyA peak velocity separations. This suggests that these galaxies have low HI column density. Finally, we find that dust regulates the amount of LyA and LyC radiation that actually escapes the ISM. Overall, the ISM porosity is one origin of strong LyA emission and enables the escape of ionizing photons in low-z leakers. However, this is not enough to explain the largest fesc(LyC) observed, which indicates that the most extreme LCEs are likely density-bounded along all lines of sight to the observer. Overall, the neutral gas porosity constrains a lower limit to the escape fraction of LyC and LyA photons, providing a key estimator of the leakage of ionizing photons.
We present rest-frame ultraviolet and optical spectroscopy of the brightest lensed galaxy yet discovered, at redshift z = 2.4. This source reveals a characteristic, triple-peaked Lyman {alpha} profile which has been predicted by various theoretical w orks but to our knowledge has not been unambiguously observed previously. The feature is well fit by a superposition of two components: a double-peak profile emerging from substantial radiative transfer, and a narrow, central component resulting from directly escaping Lyman {alpha} photons; but is poorly fit by either component alone. We demonstrate that the feature is unlikely to contain contamination from nearby sources, and that the central peak is unaffected by radiative transfer effects apart from very slight absorption. The feature is detected at signal-to-noise ratios exceeding 80 per pixel at line center, and bears strong resemblance to synthetic profiles predicted by numerical models.
Lyman-alpha (Ly{alpha}) photons from ionizing sources and cooling radiation undergo a complex resonant scattering process that generates unique spectral signatures in high-redshift galaxies. We present a detailed Ly{alpha} radiative transfer study of a cosmological zoom-in simulation from the Feedback In Realistic Environments (FIRE) project. We focus on the time, spatial, and angular properties of the Ly{alpha} emission over a redshift range of z = 5-7, after escaping the galaxy and being transmitted through the intergalactic medium (IGM). Over this epoch, our target galaxy has an average stellar mass of $M_{rm star} approx 5 times 10^8 {rm M}_odot$. We find that many of the interesting features of the Ly{alpha} line can be understood in terms of the galaxys star formation history. The time variability, spatial morphology, and anisotropy of Ly{alpha} properties are consistent with current observations. For example, the rest frame equivalent width has a ${rm EW}_{{rm Ly}alpha,0} > 20 {rm AA}$ duty cycle of 62% with a non-negligible number of sightlines with $> 100 {rm AA}$, associated with outflowing regions of a starburst with greater coincident UV continuum absorption, as these conditions generate redder, narrower (or single peaked) line profiles. The lowest equivalent widths correspond to cosmological filaments, which have little impact on UV continuum photons but efficiently trap Ly{alpha} and produce bluer, broader lines with less transmission through the IGM. We also show that in dense self-shielding, low-metallicity filaments and satellites Ly{alpha} radiation pressure can be dynamically important. Finally, despite a significant reduction in surface brightness with increasing redshift, Ly{alpha} detections and spectroscopy of high-$z$ galaxies with the upcoming James Webb Space Telescope is feasible.
112 - Renyue Cen , Taysun Kimm 2015
Simulations have indicated that most of the escaped Lyman continuum photons escape through a minority of solid angles with near complete transparency, with the remaining majority of the solid angles largely opaque, resulting in a very broad and skewe d probability distribution function (PDF) of the escape fraction when viewed at different angles. Thus, the escape fraction of Lyman continuum photons of a galaxy observed along a line of sight merely represents the properties of the interstellar medium along that line of sight, which may be an ill-representation of true escape fraction of the galaxy averaged over its full sky. Here we study how Lyman continuum photons escape from galaxies at $z=4-6$, utilizing high-resolution large-scale cosmological radiation-hydrodynamic simulations. We compute the PDF of the mean escape fraction ($left<f_{rm esc,1D}right>$) averaged over mock observational samples, as a function of the sample size, compared to the true mean (had you an infinite sample size). We find that, when the sample size is small, the apparent mean skews to the low end. For example, for a true mean of 6.7%, an observational sample of (2,10,50) galaxies at $z=4$ would have have 2.5% probability of obtaining the sample mean lower than $left<f_{rm esc,1D}right>=$(0.007%, 1.8%, 4.1%) and 2.5% probability of obtaining the sample mean being greater than (43%, 18%, 11%). Our simulations suggest that at least $sim$ 100 galaxies should be stacked in order to constrain the true escape fraction within 20% uncertainty.
Protoclusters, the progenitors of the most massive structures in the Universe, have been identified at redshifts of up to 6.6. Besides exploring early structure formation, searching for protoclusters at even higher redshifts is particularly useful to probe the reionization. Here we report the discovery of the protocluster LAGER-z7OD1 at a redshift of 6.93, when the Universe was only 770 million years old and could be experiencing rapid evolution of the neutral hydrogen fraction in the intergalactic medium. The protocluster is identified by an overdensity of 6 times the average galaxy density, and with 21 narrowband selected Lyman-$alpha$ galaxies, among which 16 have been spectroscopically confirmed. At redshifts similar to or above this record, smaller protogroups with fewer members have been reported. LAGER-z7OD1 shows an elongated shape and consists of two subprotoclusters, which would have merged into one massive cluster with a present-day mass of $3.7 times 10^{15}$ solar masses. The total volume of the ionized bubbles generated by its member galaxies is found to be comparable to the volume of the protocluster itself, indicating that we are witnessing the merging of the individual bubbles and that the intergalactic medium within the protocluster is almost fully ionized. LAGER-z7OD1 thus provides a unique natural laboratory to investigate the reionization process.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا