ﻻ يوجد ملخص باللغة العربية
Context: Planetary nebulae (PNe) are excellent tracers of stellar populations with low surface brightness, and therefore provide a powerful method to detect and explore the rich system of substructures discovered around the main spiral galaxies of the Local Group. Aims: We searched the outskirts of the Local Group spiral galaxy M33 (the Triangulum) for PNe to gain new insights into the extended stellar substructure on the northern side of the disc and to study the existence of a faint classical halo. Methods: The search is based on wide field imaging covering a 4.5 square degree area out to a maximum projected distance of about 40 kpc from the centre of the galaxy. The PN candidates are detected by the combination of images obtained in narrowband filters selecting the [OIII]$lambda5007AA$ and H$alpha$ + [NII] nebular lines and in the continuum g and r broadband filters. Results:Inside the bright optical disc of M33, eight new PN candidates were identified, three of which were spectroscopically confirmed. No PN candidates were found outside the limits of the disc. Fourteen additional sources showing [OIII] excess were also discovered. Conclusions:The absence of bright PN candidates in the area outside the galaxy disc covered by this survey sets an upper limit to the luminosity of the underlying population of $mathrm{sim1.6cdot10^{7}L_{odot}}$, suggesting the lack of a massive classical halo, which is in agreement with the results obtained using the RGB population.
Near-infrared imaging in the 1 - 0 S(1) emission line of molecular hydrogen is able to detect planetary nebulae (PNe) that are hidden from optical emission line surveys. We present images of 307 objects from the UWISH2 survey of the northern Galactic
Spectroscopic observations of 48 emission-line objects of M33 have been obtained with the multi-object, wide field, fibre spectrograph AF2/WYFFOS at the 4.2m WHT telescope (La Palma, Spain). Line intensities and logarithmic extinction, cbeta, are pre
We report the results of a survey of 442 planetary nebulae at 30 GHz. The purpose of the survey is to develop a list of planetary nebulae as calibration sources which could be used for high frequency calibration in future. For 41 PNe with sufficient
Using spectroscopic data presented in Magrini et al. (2003), we have analyzed with the photoionization code CLOUDY 94.00 (Ferland et al. 1998) 11 Planetary Nebulae belonging to the spiral galaxy M 33. Central star temperatures and nebular parameters
The age-velocity dispersion relation is an important tool to understand the evolution of the disc of the Andromeda galaxy (M31) in comparison with the Milky Way. We use Planetary Nebulae (PNe) to obtain the age-velocity dispersion relation in differe