ﻻ يوجد ملخص باللغة العربية
We survey the status of decidabilty of the consequence relation in various axiomatizations of Euclidean geometry. We draw attention to a widely overlooked result by Martin Ziegler from 1980, which proves Tarskis conjecture on the undecidability of finitely axiomatizable theories of fields. We elaborate on how to use Zieglers theorem to show that the consequence relations for the first order theory of the Hilbert plane and the Euclidean plane are undecidable. As new results we add: (A) The first order consequence relations for Wus orthogonal and metric geometries (Wen-Tsun Wu, 1984), and for the axiomatization of Origami geometry (J. Justin 1986, H. Huzita 1991)are undecidable. It was already known that the universal theory of Hilbert planes and Wus orthogonal geometry is decidable. We show here using elementary model theoretic tools that (B) the universal first order consequences of any geometric theory $T$ of Pappian planes which is consistent with the analytic geometry of the reals is decidable.
Let $K$ be a field equipped with a valuation. Tropical varieties over $K$ can be defined with a theory of Gr{o}bner bases taking into account the valuation of $K$.Because of the use of the valuation, the theory of tropical Gr{o}bner bases has proved
Quantified modal logic provides a natural logical language for reasoning about modal attitudes even while retaining the richness of quantification for referring to predicates over domains. But then most fragments of the logic are undecidable, over ma
Four points ordered in the positive order on the unit circle determine the vertices of a quadrilateral, which is considered either as a euclidean or as a hyperbolic quadrilateral depending on whether the lines connecting the vertices are euclidean or
This paper deals essentially with affine or projective transformations of Lie groups endowed with a flat left invariant affine or projective structure. These groups are called flat affine or flat projective Lie groups. Our main results determine Lie
In an emerging computing paradigm, computational capabilities, from processing power to storage capacities, are offered to users over communication networks as a cloud-based service. There, demanding computations are outsourced in order to limit infr