ﻻ يوجد ملخص باللغة العربية
The first hint of neutrino mass hierarchy is expected to come from the NO$ u$A experiment in Fermilab as the present best-fit parameter space i.e., normal hierarchy and $delta_{CP}=-90^circ$ is the favourable parameter space for NO$ u$A where there is no degeneracy. But this situation may change if the standard three flavour framework is not complete and there is existence of new physics. In this work we consider the presence of an extra light sterile neutrino at the eV scale and study the new degeneracies which are absent in the standard three flavour framework. We also study the effect of these new degeneracies on the hierarchy measurement of NO$ u$A.
We study in detail the impact of a light sterile neutrino in the interpretation of the latest data of the long baseline experiments NO$ u$A and T2K, assessing the robustness/fragility of the estimates of the standard 3-flavor parameters with respect
The $ u_e$ appearance data of T2K experiment has given a glimpse of the allowed parameters in the hierarchy-$delta_{CP}$ parameter space. In this paper, we explore how this data affects our expectations regarding the hierarchy sensitivity of the NO$
ESS$ u$SB is a proposed neutrino super-beam project at the ESS facility. We study the performance of this setup in the presence of a light eV-scale sterile neutrino, considering 540 km baseline with 2 years (8 years) of $ u$ ($bar u$) run-plan. This
The main aim of the ESS$ u$SB proposal is the discovery of the leptonic CP phase $delta_{CP}$ with a high significance ($5sigma$ for 50% values of $delta_{CP}$) by utilizing the physics at the second oscillation maxima of the $P_{mu e}$ channel. It c
We discuss the analytical expression of the oscillation probabilities at low energy long baseline experiments, such as T2HK and T2HKK in the presence of nonstandard interactions (NSIs). We show that these experiments are advantageous to explore the N