ﻻ يوجد ملخص باللغة العربية
We present results of multiband optical photometry of the black hole X-ray binary system V404 Cygni obtained using Wheaton College Observatorys 0.3m telescope, along with strictly simultaneous INTEGRAL and Swift observations during 2015 June 25.15--26.33 UT, and 2015 June 27.10--27.34 UT. These observations were made during the 2015 June outburst of the source when it was going through an epoch of violent activity in all wavelengths ranging from radio to $gamma$-rays. The multiwavelength variability timescale favors a compact emission region, most likely originating in a jet outflow, for both observing epochs presented in this work. The simultaneous INTEGRAL/Imager on Board the Integral Satellite (IBIS) 20--40 keV light curve obtained during the June 27 observing run correlates very strongly with the optical light curve, with no detectable delay between the optical bands as well as between the optical and hard X-rays. The average slope of the dereddened spectral energy distribution was roughly flat between the $I_C$- and $V$-bands during the June 27 run, even though the optical and X-ray flux varied by $>$25$times$ during the run, ruling out an irradiation origin for the optical and suggesting that the optically thick to optically thin jet synchrotron break during the observations was at a frequency larger than that of $V$-band, which is quite extreme for X-ray binaries. These observations suggest that the optical emission originated very close to the base of the jet. A strong H$alpha$ emission line, probably originating in a quasi-spherical nebula around the source, also contributes significantly in the $R_C$-band. Our data, in conjunction with contemporaneous data at other wavelengths presented by other groups, strongly suggest that the jet-base was extremely compact and energetic during this phase of the outburst.
We report on Fermi/Large Area Telescope observations of the accreting black hole low-mass X-ray binary V404 Cygni during its outburst in June-July 2015. Detailed analyses reveal a possible excess of $gamma$-ray emission on 26 June 2015, with a very s
The microquasar V404 Cygni underwent a series of outbursts in 2015, June 15-31, during which its flux in hard X-rays (20-40 keV) reached about 40 times the Crab Nebula flux. Because of the exceptional interest of the flaring activity from this source
The black-hole binary, V404 Cygni, went into outburst in June 2015, after 26 years of X-ray quiescence. We observed the outburst with the Neil Gehrels Swift observatory. We present optical/UV observations taken with the Swift Ultra-violet Optical Tel
We present a multiwavelength analysis of the simultaneous optical and X-ray light curves of the microquasar V404 Cyg during the June 2015 outburst. We have performed a comprehensive analysis of all the INTEGRAL/IBIS, JEM-X, and OMC observations durin
Waseda University Nasu telescope array is a spatial fast Fourier transform (FFT) interferometer consisting of eight linearly aligned antennas with 20 m spherical dishes. This type of interferometer was developed to survey transient radio sources with