ترغب بنشر مسار تعليمي؟ اضغط هنا

Electronic characteristics of ultrathin SrRuO$_3$ films and their relationship with the metal$-$insulator transition

87   0   0.0 ( 0 )
 نشر من قبل Subeen Pang
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

SrRuO$_3$ (SRO) films are known to exhibit insulating behavior as their thickness approaches four unit cells. We employ electron energy$-$loss (EEL) spectroscopy to probe the spatially resolved electronic structures of both insulating and conducting SRO to correlate them with the metal$-$insulator transition (MIT). Importantly, the central layer of the ultrathin insulating film exhibits distinct features from the metallic SRO. Moreover, EEL near edge spectra adjacent to the SrTiO$_3$ (STO) substrate or to the capping layer are remarkably similar to those of STO. The site$-$projected density of states based on density functional theory (DFT) partially reflects the characteristics of the spectra of these layers. These results may provide important information on the possible influence of STO on the electronic states of ultrathin SRO.



قيم البحث

اقرأ أيضاً

122 - Liang Wu , Fangdi Wen , Yixing Fu 2019
A notion of the Berry phase is a powerful means to unravel the non-trivial role of topology in various novel phenomena observed in chiral magnetic materials and structures. A celebrated example is the intrinsic anomalous Hall effect (AHE) driven by t he non-vanishing Berry phase in the momentum space. As the AHE is highly dependent on details of the band structure near the Fermi edge, the Berry phase and AHE can be altered in thin films whose chemical potential is tunable by dimensionality and disorder. Here, we demonstrate that in ultrathin SrRuO$_3$ films the Berry phase can be effectively manipulated by the effects of disorder on the intrinsic Berry phase contribution to the AHE, which is corroborated by our numerically exact calculations. In addition, our findings provide ample experimental evidence for the superficial nature of the topological Hall effect attribution to the protected spin texture and instead lend strong support to the multi-channel AHE scenario in ultrathin SrRuO$_3$.
265 - Jing Xia , W. Siemons , G. Koster 2008
Ultrathin films of the itinerant ferromagnet SrRuO$_3$ were studied using transport and magnto-optic polar Kerr effect. We find that below 4 monolayers the films become insulating and their magnetic character changes as they loose their simple ferrom agnetic behavior. We observe a strong reduction in the magnetic moment which for 3 monolayers and below lies in the plane of the film. Exchange-bias behavior is observed below the critical thickness, and may point to induced antiferromagnetism in contact with ferromagnetic regions.
Metallic oxide SrVO3 represents a prototype system for the study of the mechanism behind thickness-induced metal-to-insulator transition (MIT) or crossover in thin films due to its simple cubic symmetry with one electron in the 3d state in the bulk. Here we report a deviation of chemical composition and distortion of lattice structure existing in the initial 3 unit cells of SrVO3 films grown on SrTiO3 (001) from its bulk form, which shows a direct correlation to the thickness-dependent MIT. In-situ photoemission and scanning tunneling spectroscopy indicate a MIT at the critical thickness of ~3 unit cell (u.c.), which coincides with the formation of a (root2Xroot2)R45 surface reconstruction. However, atomically resolved scanning transmission electron microscopy and electron energy loss spectroscopy show depletion of Sr, change of V valence, thus implying the existence of a significant amount of oxygen vacancies in the 3 u.c. of SrVO3 near the interface. Transport and magneto-transport measurements further reveal that disorder, rather than electron correlations, is likely to be the main cause for the MIT in the SrVO3 ultrathin films.
Transport in ultrathin films of LaNiO3 evolves from a metallic to a strongly localized character as the films thickness is reduced and the sheet resistance reaches a value close to h/e2, the quantum of resistance in two dimensions. In the intermediat e regime, quantum corrections to the Drude low- temperature conductivity are observed; they are accurately described by weak localization theory. Remarkably, the negative magnetoresistance in this regime is isotropic, which points to magnetic scattering associated with the proximity of the system to either a spin glass state or the charge ordered antiferromagnetic state observed in other rare earth nickelates.
Dimensionality control in the LaNiO3 (LNO) heterostructure has attracted attention due to its two-dimensional (2D) electronic structure was predicted to have an orbital ordered insulating ground state, analogous to that of the parent compound of high -Tc cuprate superconductors [P. Hansmann et al., Phys. Rev. Lett. 103, 016401 (2009)]. Here, we directly measured the electronic structure of LNO ultrathin films using in situ angle-resolved photoemission spectroscopy (ARPES). We recognized the dimensional crossover of the electronic structure around 3-unit cells (UC)-thick LNO film and observed the orbital reconstruction. However, complete orbital ordering was not achieved. Instead, we observed that the Fermi surface nesting effect became strong in the 2D LNO ultrathin film. These results indicated that the orbital reconstruction should be described by taking into account the strong nesting effect to search for the novel phenomena, such as superconductivity in 2D LNO heterostructure. In addition, the APRES spectra showed that the Fermi surface existed down to a 1-UC-thick film, which showed insulating behavior in transport measurements. We suggested that the metal-insulator transition in the transport properties may originate from Anderson localization.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا