ﻻ يوجد ملخص باللغة العربية
We solved the set of two-dimensional magnetohydrodynamic (MHD) equations for optically thin black hole accretion flows incorporating toroidal component of magnetic field. Following global and local MHD simulations of black hole accretion disks, the magnetic field inside the disk is decomposed into a large scale field and a fluctuating field. The effects of the fluctuating magnetic field in transferring the angular momentum and dissipating the energy are described through the usual $ alpha $ description. We solved the MHD equations by assuming steady state and radially self-similar approximation in $ r-theta $ plane of spherical coordinate system. We found that as the amount of magnetic field at the equatorial plane increases, the heating by the viscosity decreases. In addition, the maximum amount of the heating by the viscous dissipation is produced at the mid-plane of the disk, while that of the heating by the magnetic field dissipation is produced at the surface of the disk. Our main conclusion is that in terms of the no-outflow solution, thermal equilibrium still exists for the strong magnetic filed at the equatorial plane of the disk.
The magnitude of the viscosity and magnetic field parameters in hot accretion flows is investigated in low luminosity active galactic nuclei (LLAGNs). Theoretical studies show that a geometrically thin, optically thick disk is truncated at mass accre
We study the effects of accretion environment (gas density, temperature and angular momentum) at large radii ($sim 10$pc) on luminosity of hot accretion flows. The radiative feedback effects from the accretion flow on the accretion environment are al
Several observations of astrophysical jets show evidence of a structure in the direction perpendicular to the jet axis, leading to the development of spine & sheath models of jets. Most studies focus on a two-component jet consisting of a highly rela
This is the fourth paper of our series of works studying winds from hot accretion flows around black holes. In the first two papers, we have shown the existence of strong winds in hot accretion flows using hydrodynamical and magnetohydrodynamical (MH
We analyze two 3D general-relativistic magnetohydrodynamic accretion simulations in the context of how they would manifest in Event Horizon Telescope (EHT) observations of supermassive black holes. The two simulations differ only in whether the initi