Vibrational Energy Transfer from Photo-Excited Carbon Nanotubes to Proteins Observed by Coherent Phonon Spectroscopy


الملخص بالإنكليزية

Vibrational energy transfer from photo-excited single-wall carbon nanotubes (SWCNTs) to coupled proteins is a key to engineer thermally induced biological reactions such as photothermal therapy. Here, we explored vibrational energy transfer from the photo-excited SWCNTs to different adsorbed biological materials by means of a femtosecond pump-probe technique. We show that the vibrational relaxation time of the radial breathing modes (RBMs) in SWCNTs significantly depends on the structure of coupled materials, i.e. proteins or biopolymers, indicating the vibrational energy transfer is governed by overlap of phonon density of states between the SWCNTs and coupled materials.

تحميل البحث