ترغب بنشر مسار تعليمي؟ اضغط هنا

Gradient structure and transport coefficients for strong particles

101   0   0.0 ( 0 )
 نشر من قبل Davide Gabrielli
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We introduce and study a simple and natural class of solvable stochastic lattice gases. This is the class of emph{Strong Particles}. The name is due to the fact that when they try to jump to an occupied site they succeed pushing away a pile of particles. For this class of models we explicitly compute the transport coefficients. We also discuss some generalizations and the relations with other classes of solvable models.



قيم البحث

اقرأ أيضاً

The Enskog kinetic theory for moderately dense granular suspensions is considered as a model to determine the Navier-Stokes transport coefficients. The influence of the interstitial gas on solid particles is modeled by a viscous drag force term plus a stochastic Langevin-like term. The suspension model is solved by means of the Chapman--Enskog method conveniently adapted to dissipative dynamics. The momentum and heat fluxes as well as the cooling rate are obtained to first order in the deviations of the hydrodynamic field gradients from their values in the homogeneous steady state. Since the cooling terms (arising from collisional dissipation and viscous friction) cannot be compensated for by the energy gained by grains due to collisions with the interstitial gas, the reference distribution (zeroth-order approximation of the Chapman--Enskog solution) depends on time through its dependence on temperature. On the other hand, to simplify the analysis and given that we are interested in computing transport properties in the first order of deviations from the reference state, the steady-state conditions are considered. This simplification allows us to get explicit expressions for the Navier--Stokes transport coefficients. As expected, the results show that the dependence of the transport coefficients on both inelasticity and density is clearly different from that found in its granular counterpart (no gas phase). Finally, a linear stability analysis of the hydrodynamic equations with respect to the homogeneous steady state is performed. In contrast to the granular case (no gas-phase), no instabilities are found and hence, the homogeneous steady state is (linearly) stable.
We review the recent advances on exact results for dynamical correlation functions at large scales and related transport coefficients in interacting integrable models. We discuss Drude weights, conductivity and diffusion constants, as well as linear and nonlinear response on top of equilibrium and non-equilibrium states. We consider the problems from the complementary perspectives of the general hydrodynamic theory of many-body systems, including hydrodynamic projections, and form-factor expansions in integrable models, and show how they provide a comprehensive and consistent set of exact methods to extract large scale behaviours. Finally, we overview various applications in integrable spin chains and field theories.
182 - Vicente Garzo 2007
The Boltzmann equation for d-dimensional inelastic Maxwell models is considered to analyze transport properties in spatially inhomogeneous states close to the simple shear flow. A normal solution is obtained via a Chapman--Enskog--like expansion arou nd a local shear flow distribution f^{(0)} that retains all the hydrodynamic orders in the shear rate. The constitutive equations for the heat and momentum fluxes are obtained to first order in the deviations of the hydrodynamic field gradients from their values in the reference state and the corresponding generalized transport coefficients are {em exactly} determined in terms of the coefficient of restitution alpha and the shear rate a. Since f^{(0)} applies for arbitrary values of the shear rate and is not restricted to weak dissipation, the transport coefficients turn out to be nonlinear functions of both parameters a and alpha. A comparison with previous results obtained for inelastic hard spheres from a kinetic model of the Boltzmann equation is also carried out.
165 - M. Mendoza , I. Karlin , S. Succi 2013
We compute the shear and bulk viscosities, as well as the thermal conductivity of an ultrarelativistic fluid obeying the relativistic Boltzmann equation in 2+1 space-time dimensions. The relativistic Boltzmann equation is taken in the single relaxati on time approximation, based on two approaches, the first, due to Marle and using the Eckart decomposition, and the second, proposed by Anderson and Witting and using the Landau-Lifshitz decomposition. In both cases, the local equilibrium is given by a Maxwell-Juettner distribution. It is shown that, apart from slightly different numerical prefactors, the two models lead to a different dependence of the transport coefficients on the fluid temperature, quadratic and linear, for the case of Marle and Anderson-Witting, respectively. However, by modifying the Marle model according to the prescriptions given in Ref.[1], it is found that the temperature dependence becomes the same as for the Anderson-Witting model.
Thermal transport coefficients are independent of the specific microscopic expression for the energy density and current from which they can be derived through the Green-Kubo formula. We discuss this independence in terms of a kind of gauge invarianc e resulting from energy conservation and extensivity, and demonstrate it numerically for a Lennard-Jones fluid, where different forms of the microscopic energy density lead to different time correlation functions for the heat flux, all of them, however, resulting in the same value for the thermal conductivity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا