ترغب بنشر مسار تعليمي؟ اضغط هنا

Two class I very low-mass objects in Taurus

85   0   0.0 ( 0 )
 نشر من قبل Cuong Dang Duc
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report our study of two proto-brown dwarf candidates in Taurus, [GKH94]~41 and IRAS~04191+1523B. Based on continuum maps at 102~GHz (or 2.9~mm), spectral types and the spectral energy distribution of both targets, we confirmed the class I evolutionary stage of [GKH94]~41 and IRAS~04191+1523B, and estimated the upper limit to the final masses to be 49$^{+56}_{-27}$~$M_{rm J}$ and 75$^{+40}_{-26}$~$M_{rm J}$ for [GKH94]~41 and IRAS~04191+1523B, respectively. This indicates that they will likely end up as brown dwarfs or very low-mass stars. The existence of these class I very low-mass objects strongly supports the scenario that brown dwarfs and very low-mass stars have the same formation stages as low-mass stars.



قيم البحث

اقرأ أيضاً

146 - Sascha P. Quanz 2009
The number of low-mass brown dwarfs and even free floating planetary mass objects in young nearby star-forming regions and associations is continuously increasing, offering the possibility to study the low-mass end of the IMF in greater detail. In th is paper, we present six new candidates for (very) low-mass objects in the Taurus star-forming region one of which was recently discovered in parallel by Luhman et al. (2009). The underlying data we use is part of a new database from a deep near-infrared survey at the Calar Alto observatory. The survey is more than four magnitudes deeper than the 2MASS survey and covers currently ~1.5 square degree. Complementary optical photometry from SDSS were available for roughly 1.0 square degree. After selection of the candidates using different color indices, additional photometry from Spitzer/IRAC was included in the analysis. In greater detail we focus on two very faint objects for which we obtained J-band spectra. Based on comparison with reference spectra we derive a spectral type of L2+/-0.5 for one object, making it the object with the latest spectral type in Taurus known today. From models we find the effective temperature to be 2080+/-140 K and the mass 5-15 Jupiter masses. For the second source the J-band spectrum does not provide a definite proof of the young, low-mass nature of the object as the expected steep water vapor absorption at 1.33 micron is not present in the data. We discuss the probability that this object might be a background giant or carbon star. If it were a young Taurus member, however, a comparison to theoretical models suggests that it lies close to or even below the deuterium burning limit (<13 Jupiter masses) as well. A first proper motion analysis for both objects shows that they are good candidates for being Taurus members.
Four Class I maser sources were detected at 44, 84, and 95 GHz toward chemically rich outflows in the regions of low-mass star formation NGC 1333I4A, NGC 1333I2A, HH25, and L1157. One more maser was found at 36 GHz toward a similar outflow, NGC 2023. Flux densities of the newly detected masers are no more than 18 Jy, being much lower than those of strong masers in regions of high-mass star formation. The brightness temperatures of the strongest peaks in NGC 1333I4A, HH25, and L1157 at 44 GHz are higher than 2000 K, whereas that of the peak in NGC 1333I2A is only 176 K. However, rotational diagram analysis showed that the latter source is also a maser. The main properties of the newly detected masers are similar to those of Class I methanol masers in regions of massive star formation. The former masers are likely to be an extension of the latter maser population toward low luminosities of both the masers and the corresponding YSOs.
(Abridged) Disks are observed around pre-main sequence stars, but how and when they form is still heavily debated. While disks around young stellar objects have been identified through thermal dust emission, spatially and spectrally resolved molecula r line observations are needed to determine their nature. We present subarcsecond observations of dust and gas toward four Class I low-mass young stellar objects in Taurus. The 13CO and C18O J=2-1 transitions at 220 GHz were observed with the Plateau de Bure Interferometer at a spatial resolution of ~0.8 and analyzed using uv-space position velocity diagrams to determine the nature of their observed velocity radient. Rotationally supported disks (RSDs) are detected around 3 of the 4 Class I sources studied. The derived masses identify them as Stage I objects; i.e., their stellar mass is higher than their envelope and disk masses. The outer radii of the Keplerian disks toward our sample of Class I sources are <~ 100 AU. The lack of on-source C18O emission for TMR1 puts an upper limit of 50 AU on its size. Flattened structures at radii > 100 AU around these sources are dominated by infalling motion (v propto r^-1). A large-scale envelope model is required to estimate the basic parameters of the flattened structure from spatially resolved continuum data. Similarities and differences between the gas and dust disk are discussed. Combined with literature data, the sizes of the RSDs around Class I objects are best described with evolutionary models with an initial rotation of 10^-14 Hz and slow sound speeds. Based on the comparison of gas and dust disk masses, little CO is frozen out within 100 AU in these disks. RSDs with radii up to 100 AU are present around Class I embedded objects. Larger surveys of both Class 0 and I objects are needed to determine whether most disks form late or early in the embedded phase.
A survey of young bipolar outflows in regions of low-to-intermediate-mass star formation has been carried out in two class I methanol maser transitions: 7_0-6_1A+ at 44 GHz and 4_{-1}-3_0E at 36 GHz. We detected narrow features towards NGC 1333I2A, N GC 1333I4A, HH25MMS, and L1157 at 44 GHz, and towards NGC 2023 at 36 GHz. Flux densities of the lines detected at 44 GHz are no higher than 11 Jy and the relevant source luminosities are about 10^{22} erg s{-1}, which is much lower than those of strong masers in high-mass star formation regions. No emission was found towards 39 outflows. All masers detected at 44 GHz are located in clouds with methanol column densities of the order of or larger than a few x 10^{14} cm$^{-2}. The upper limits for the non-detections are typically of the order of 3--5 Jy. Observations in 2004, 2006, and 2008 did not reveal any significant variability of the 44 GHz masers in NGC 1333I4A, HH25MMS, and L1157.
We present the results of a single dish survey toward 95 VeLLOs in optically thick (HCN 1-0) and thin ($rm N_2H^+$ 1-0) lines performed for the purpose of understanding the physical processes of inward motions in the envelopes of the VeLLOs and chara cterizing their true nature. The normalized velocity differences ($delta V_{HCN}$) between the peak velocities of the two lines were derived for 41 VeLLOs detected in both lines. The $delta V$ distribution of these VeLLOs is found to be significantly skewed to the blue, indicating the dominance of infalling motions in their envelopes. The infall speeds were derived for 15 infall candidates by using the HILL5 radiative transfer model. The speeds were in the range of 0.03 $rm km~s^{-1}$ to 0.3 $rm km~s^{-1}$, with a median value of 0.16 $rm km~s^{-1}$, being consistent with the gravitational free-fall speeds from pressure-free envelopes. The mass infall rates calculated from the infall speeds are mostly of the order of $10^{-6} M_{odot}~yr^{-1}$ with a median value of $rm 3.4 pm 1.5 times 10^{-6} M_{odot}~yr^{-1}$. These are found to be also consistent with the values predicted with the inside-out collapse model and show a fairly good correlation with the internal luminosities of the VeLLOs. This again indicates that the infall motions observed toward the VeLLOs are likely to be due to the gravitational infall motions in their envelopes. Our study suggests that most of the VeLLOs are potentially faint protostars while two of the VeLLOs could possibly be proto-brown dwarf candidates.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا