ترغب بنشر مسار تعليمي؟ اضغط هنا

Multi-wavelength observations of planet forming disks: Constraints on planet formation processes

72   0   0.0 ( 0 )
 نشر من قبل Inga Kamp Dr.
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Our understanding of protoplanetary disks has greatly improved over the last decade due to a wealth of data from new facilities. Unbiased dust surveys with Spitzer leave us with good constraints on the dust dispersal timescale of small grains in the terrestrial planet forming region. In the ALMA era, this can be confronted for the first time also with evolutionary timescales of mm grains in the outer disk. Gas surveys in the context of the existing multi-wavelength dust surveys will be a key in large statistical studies of disk gas evolution. Unbiased gas surveys are limited to ALMA CO submm surveys, where the quantitative interpretation is still debated. Herschel gas surveys have been largely biased, but [OI] 63 mic surveys and also accretion tracers agree qualitatively with the evolutionary timescale of small grains in the inner disk. Recent advances achieved by means of consistent multi-wavelength studies of gas AND dust in planet forming disks reveal the subtleties of the quantitative interpretation of gas surveys. Observational methods to determine disk masses e.g. from CO submm lines require the knowledge of the dust properties in the disk. Understanding not only the gas evolution, but also its chemical composition will provide crucial input for planet formation models. Kinetic chemical results give profoundly different answers than thermodynamic equilibrium in terms of the C/O ratios as well as the water ice/rock ratios. Again, dust has a key impact on the chemical evolution and composition of the gas. Grain growth for example affects freeze-out processes and strongly increases the cosmic ray induced UV field.



قيم البحث

اقرأ أيضاً

The transfer of circumstellar disk mass and momentum onto the protostar and out into the environment occurs via a variety of mechanisms including magnetospheric accretion, jets, outflows, and disk winds. The interplay of these processes determine bot h the conditions under which planet formation occurs and the lifetime of the disk. Metallic emission lines, along with the Balmer series of hydrogen, probe the kinematics of gas within the planet-forming and central regions of circumstellar disks. High-spectral resolution study of these emission lines provides critical information on mass and momentum loss, turbulence, and disk wind origins.
The evolution of protoplanetary disks is dominated by the conservation of angular momentum, where the accretion of material onto the central star is driven by viscous expansion of the outer disk or by disk winds extracting angular momentum without ch anging the disk size. Studying the time evolution of disk sizes allows us therefore to distinguish between viscous stresses or disk winds as the main mechanism of disk evolution. Observationally, estimates of the disk gaseous outer radius are based on the extent of the CO rotational emission, which, during the evolution, is also affected by the changing physical and chemical conditions in the disk. We use physical-chemical DALI models to study how the extent of the CO emission changes with time in a viscously expanding disk and investigate to what degree this observable gas outer radius is a suitable tracer of viscous spreading and whether current observations are consistent with viscous evolution. We find that the gas outer radius (R_co) measured from our models matches the expectations of a viscously spreading disk: R_co increases with time and for a given time R_co is larger for a disk with a higher viscosity alpha_visc. However, in the extreme case where the disk mass is low (less than 10^-4 Msun) and alpha_visc is high (larger than 10^-2), R_co will instead decrease with time as a result of CO photodissociation in the outer disk. For most disk ages R_co is up to 12x larger than the characteristic size R_c of the disk, and R_co/R_c is largest for the most massive disk. As a result of this difference, a simple conversion of R_co to alpha_visc will overestimate the true alpha_visc of the disk by up to an order of magnitude. We find that most observed gas outer radii in Lupus can be explained using a viscously evolving disk that starts out small (R_c = 10 AU) and has a low viscosity (alpha_visc = 10^-4 - 10^-3).
We carried out a 12CO(3-2) survey of 52 southern stars with a wide range of IR excesses (LIR/L*) using the single dish telescopes APEX and ASTE. The main aims were (1) to characterize the evolution of molecular gas in circumstellar disks using LIR/L* values as a proxy of disk dust evolution, and (2) to identify new gas-rich disk systems suitable for detailed study with ALMA. About 60% of the sample (31 systems) have LIR/L* > 0.01 typical of T-Tauri or Herbig AeBe stars, and the rest (21 systems) have LIR/L* < 0.01 typical of debris disks. We detect CO(3-2) emission from 20 systems, and 18 (90%) of these have LIR/L* > 0.01. However, the spectra of only four of the newly detected systems appear free of contamination from background or foreground emission from molecular clouds. These include the early-type stars HD 104237 (A4/5V, 116 pc) and HD 98922 (A2 III, 507 pc, as determined in this work), where our observations reveal the presence of CO-rich circumstellar disks for the first time. Of the other detected sources, many could harbor gaseous circumstellar disks, but our data are inconclusive. For these two newly discovered gas-rich disks, we present radiative transfer models that simultaneously reproduce their spectral energy distributions and the 12CO(3-2) line profiles. For both of these systems, the data are fit well by geometrically flat disks, placing them in the small class of non-flaring disks with significant molecular gas reservoirs.
(Abridged) We present CARMA observations of the thermal dust emission from the circumstellar disks around the young stars RYTau and DGTau at wavelengths of 1.3mm and 2.8mm. The angular resolution of the maps is as high as 0.15arcsec, or 20AU at the d istance of the Taurus cloud, which is a factor of 2 higher than has been achieved to date at these wavelengths. The unprecedented detail of the resulting disk images enables us to address three important questions related to the formation of planets. (1) What is the radial distribution of the circumstellar dust? (2) Does the dust emission show any indication of gaps that might signify the presence of (proto-)planets? (3) Do the dust properties depend on the orbital radius? We find that modeling the disk surface density in terms of either a classical power law or the similarity solution for viscous disk evolution, reproduces the observations well. The 1.3mm image from RYTau shows two peaks separated by 0.2arcsec with a decline in the dust emission toward the stellar position, which is significant at about 2-4sigma. For both RYTau and DGTau, the dust emission at radii larger than 15 AU displays no significant deviation from an unperturbed viscous disk model. In particular, no radial gaps in the dust distribution are detected. Under reasonable assumptions, we exclude the presence of planets more massive than 5 Jupiter masses orbiting either star at distances between about 10 and 60 AU. The radial variation of the dust opacity slope, beta, was investigated by comparing the 1.3mm and 2.8mm observations. We find mean values of beta of 0.5 and 0.7 for DGTau and RYTau respectively. Variations in beta are smaller than 0.7 between 20 and 70 AU. These results confirm that the circumstellar dust throughout these disks differs significantly from dust in the interstellar medium.
[Abridged] The infrared ro-vibrational emission lines from organic molecules in the inner regions of protoplanetary disks are unique probes of the physical and chemical structure of planet forming regions and the processes that shape them. The non-LT E excitation effects of carbon dioxide (CO2) are studied in a full disk model to evaluate: (i) what the emitting regions of the different CO2 ro-vibrational bands are; (ii) how the CO2 abundance can be best traced using CO2 ro-vibrational lines using future JWST data and; (iii) what the excitation and abundances tell us about the inner disk physics and chemistry. CO2 is a major ice component and its abundance can potentially test models with migrating icy pebbles across the iceline. A full non-LTE CO2 excitation model has been built. The characteristics of the model are tested using non-LTE slab models. Subsequently the CO2 line formation has been modelled using a two-dimensional disk model representative of T-Tauri disks. The CO2 gas that emits in the 15 $mu$m and 4.5 $mu$m regions of the spectrum is not in LTE and arises in the upper layers of disks, pumped by infrared radiation. The v$_2$ 15 $mu$m feature is dominated by optically thick emission for most of the models that fit the observations and increases linearly with source luminosity. Its narrowness compared with that of other molecules stems from a combination of the low rotational excitation temperature (~250 K) and the inherently narrower feature for CO2. The inferred CO2 abundances derived for observed disks are more than two orders of magnitude lower than those in interstellar ices (~10$^5$), similar to earlier LTE disk estimates. Line-to-continuum ratios are low, of order a few %, thus high signal-to-noise (S/N > 300) observations are needed for individual line detections. Prospects of accurate abundance retreival with JWST-MIRI and JWST-NIRSpec are discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا