ﻻ يوجد ملخص باللغة العربية
We report the discovery of 11 bipolar outflows within a projected distance of 1pc from Sgr A* based on deep ALMA observations of $^{13}$CO, H30$alpha$ and SiO (5-4) lines with sub-arcsecond and $sim1.3$ km/s, resolutions. These unambiguous signatures of young protostars manifest as approaching and receding lobes of dense gas swept up by the jets created during the formation and early evolution of stars. The lobe masses and momentum transfer rates are consistent with young protostellar outflows found throughout the disk of the Galaxy. The mean dynamical age of the outflow population is estimated to be $6.5^{+8.1}_{-3.6}times10^3$ years. The rate of star formation is $sim5times10^{-4}$msol,yr$^{-1}$ assuming a mean stellar mass of $sim0.3$ msol. This discovery provides evidence that star formation is taking place within clouds surprisingly close to Sgr A*, perhaps due to events that compress the host cloud, creating condensations with sufficient self-gravity to resist tidal disruption by Sgr A*. Low-mass star formation over the past few billion years at this level would contribute significantly to the stellar mass budget in the central few pc of the Galaxy. The presence of many dense clumps of molecular material within 1pc of Sgr A* suggests that star formation could take place in the immediate vicinity of supermassive black holes in the nuclei of external galaxies
Using the VLA, we recently detected a large number of protoplanetary disk (proplyd) candidates lying within a couple of light years of the massive black hole Sgr A*. The bow-shock appearance of proplyd candidates point toward the young massive stars
ALMA observations of the Galactic center with spatial resolution $2.61times0.97$ resulted in the detection of 11 SiO (5-4) clumps of molecular gas within 0.6pc (15$$) of Sgr A*, interior to the 2-pc circumnuclear molecular ring. The three SiO (5-4) c
We present 1.05 mm ALMA observations of the deeply embedded high-mass protocluster G11.92-0.61, designed to search for low-mass cores within the accretion reservoir of the massive protostars. Our ALMA mosaic, which covers an extent of ~0.7 pc at sub-
Massive clumps, prior to the formation of any visible protostars, are the best candidates to search for the elusive massive starless cores. In this work we investigate the dust and gas properties of massive clumps selected to be 70 micron quiet, ther
We present radio and infrared observations indicating on-going star formation activity inside the $sim2-5$ pc circumnuclear ring at the Galactic center. Collectively these measurements suggest a continued disk-based mode of on-going star formation ha