ﻻ يوجد ملخص باللغة العربية
The objective of this paper is 3D shape understanding from single and multiple images. To this end, we introduce a new deep-learning architecture and loss function, SilNet, that can handle multiple views in an order-agnostic manner. The architecture is fully convolutional, and for training we use a proxy task of silhouette prediction, rather than directly learning a mapping from 2D images to 3D shape as has been the target in most recent work. We demonstrate that with the SilNet architecture there is generalisation over the number of views -- for example, SilNet trained on 2 views can be used with 3 or 4 views at test-time; and performance improves with more views. We introduce two new synthetics datasets: a blobby object dataset useful for pre-training, and a challenging and realistic sculpture dataset; and demonstrate on these datasets that SilNet has indeed learnt 3D shape. Finally, we show that SilNet exceeds the state of the art on the ShapeNet benchmark dataset, and use SilNet to generate novel views of the sculpture dataset.
We present a novel neural surface reconstruction method, called NeuS, for reconstructing objects and scenes with high fidelity from 2D image inputs. Existing neural surface reconstruction approaches, such as DVR and IDR, require foreground mask as su
Recent works on implicit neural representations have shown promising results for multi-view surface reconstruction. However, most approaches are limited to relatively simple geometries and usually require clean object masks for reconstructing complex
Recovering the 3D structure of an object from a single image is a challenging task due to its ill-posed nature. One approach is to utilize the plentiful photos of the same object category to learn a strong 3D shape prior for the object. This approach
In this paper, we address the problem of reconstructing an objects surface from a single image using generative networks. First, we represent a 3D surface with an aggregation of dense point clouds from multiple views. Each point cloud is embedded in
3D reconstruction from a single RGB image is a challenging problem in computer vision. Previous methods are usually solely data-driven, which lead to inaccurate 3D shape recovery and limited generalization capability. In this work, we focus on object