ﻻ يوجد ملخص باللغة العربية
To shed more light on the nature of the observed Ly{alpha} absorption during transits of HD 209458b and to quantify the major mechanisms responsible for the production of fast hydrogen atoms (the so called energetic neutral atoms, ENAs) around the planet, 2D hydrodynamic multifluid modeling of the expanding planetary upper atmosphere, which is driven by stellar XUV, and its interaction with the stellar wind has been performed. The model selfconsistently describes the escaping planetary wind, taking into account the generation of ENAs due to particle acceleration by the radiation pressure and by the charge exchange between the stellar wind protons and planetary atoms. The calculations in a wide range of stellar wind parameters and XUV flux values showed that under typical Sun-like star conditions, the amount of generated ENAs is too small, and the observed absorption at the level of 6-8 percent can be attributed only to the non-resonant natural line broadening. For lower XUV fluxes, e.g., during the activity minima, the number of planetary atoms that survive photoionization and give rise to ENAs increases, resulting in up to 10-15 percent absorption at the blue wing of the Lya line, caused by resonant thermal line broadening. A similar asymmetric absorption can be seen under the conditions realized during coronal mass ejections, when sufficiently high stellar wind pressure confines the escaping planetary material within a kind of bowshock around the planet. It was found that the radiation pressure in all considered cases has a negligible contribution to the production of ENAs and the corresponding absorption.
The absorption of stellar radiation observed by the HD209458b in resonant lines of OI and CII has not yet been satisfactorily modeled. In our previous 2D simulations we have shown that the hydrogen-dominated upper atmosphere of HD209458b, heated by X
Warm Neptune GJ3470b has been recently observed in 23S-23P transition of metastable helium, yielding absorption of about 1% in Doppler velocity range of [-40; 10] km/s. Along with previous detection of absorption in Ly{alpha} with depth of 20-40% in
We present the first three-dimensional magnetohydrodynamic (MHD) simulations of the atmosphere of HD 209458b which self-consistently include reduction of winds due to the Lorentz force and Ohmic heating. We find overall wind structures similar to tha
We perform a systematic combined photometric and kinematic analysis of a sample of globular clusters under different relaxation conditions, based on their core relaxation time (as listed in available catalogs), by means of two well-known families of
There is evidence that the transiting planet HD 209458b has a large exosphere of neutral hydrogen, based on a 15% decrement in Lyman-alpha flux that was observed by Vidal-Madjar et al. during transits. Here we report upper limits on H-alpha absorptio