ﻻ يوجد ملخص باللغة العربية
Cascades represent rapid changes in networks. A cascading phenomenon of ecological and economic impact is the spread of invasive species in geographic landscapes. The most promising management strategy is often biocontrol, which entails introducing a natural predator able to control the invading population, a setting that can be treated as two interacting cascades of predator and prey populations. We formulate and study a nonlinear problem of optimal biocontrol: optimally seeding the predator cascade over time to minimize the harmful prey population. Recurring budgets, which typically face conservation organizations, naturally leads to sparse constraints which make the problem amenable to approximation algorithms. Available methods based on continuous relaxations scale poorly, to remedy this we develop a novel and scalable randomized algorithm based on a width relaxation, applicable to a broad class of combinatorial optimization problems. We evaluate our contributions in the context of biocontrol for the insect pest Hemlock Wolly Adelgid (HWA) in eastern North America. Our algorithm outperforms competing methods in terms of scalability and solution quality, and finds near optimal strategies for the control of the HWA for fine-grained networks -- an important problem in computational sustainability.
We study the adaptive dynamics of predator-prey systems modeled by a dynamical system in which the traits of predators and prey are allowed to evolve by small mutations. When only the prey are allowed to evolve, and the size of the mutational change
We simulate an individual-based model that represents both the phenotype and genome of digital organisms with predator-prey interactions. We show how open-ended growth of complexity arises from the invariance of genetic evolution operators with respe
It is well-established that including spatial structure and stochastic noise in models for predator-prey interactions invalidates the classical deterministic Lotka-Volterra picture of neutral population cycles. In contrast, stochastic models yield lo
We present a dynamical model for the price evolution of financial assets. The model is based in a two level structure. In the first stage one finds an agent-based model that describes the present state of the investors beliefs, perspectives or strate
Population dynamics and evolutionary genetics underly the structure of ecosystems, changing on the same timescale for interacting species with rapid turnover, such as virus (e.g. HIV) and immune response. Thus, an important problem in mathematical mo