ﻻ يوجد ملخص باللغة العربية
As endpoints of the hierarchical mass-assembly process, the stellar populations of local early-type galaxies encode the assembly history of galaxies over cosmic time. We use Horizon-AGN, a cosmological hydrodynamical simulation, to study the merger histories of local early-type galaxies and track how the morphological mix of their progenitors evolves over time. We provide a framework for alleviating `progenitor bias -- the bias that occurs if one uses only early-type galaxies to study the progenitor population. Early-types attain their final morphology at relatively early epochs -- by $zsim1$, around 60 per cent of todays early-types have had their last significant merger. At all redshifts, the majority of mergers have one late-type progenitor, with late-late mergers dominating at $z>1.5$ and early-early mergers becoming significant only at $z<0.5$. Progenitor bias is severe at all but the lowest redshifts -- e.g. at $zsim0.6$, less than 50 per cent of the stellar mass in todays early-types is actually in progenitors with early-type morphology, while, at $zsim2$, studying only early-types misses almost all (80 per cent) of the stellar mass that eventually ends up in local early-type systems. At high redshift, almost all massive late-type galaxies, regardless of their local environment or star-formation rate, are progenitors of local early-type galaxies, as are lower-mass (M$_star$ $<$ 10$^{10.5}$ M$_{odot}$) late-types as long as they reside in high density environments. In this new era of large observational surveys (e.g. LSST, JWST), this study provides a framework for studying how todays early-type galaxies have been built up over cosmic time.
Elliptical galaxies today appear aligned with the large-scale structure of the Universe, but it is still an open question when they acquire this alignment. Observational data is currently insufficient to provide constraints on the time evolution of i
Using the two large cosmological hydrodynamical simulations, Horizon-AGN (H-AGN) and Horizon-noAGN (H-noAGN, no AGN feedback), we investigate how a typical sub-grid model for AGN feedback affects the evolution of the total density profiles (dark matt
Using a suite of three large cosmological hydrodynamical simulations, Horizon-AGN, Horizon-noAGN (no AGN feedback) and Horizon-DM (no baryons), we investigate how a typical sub-grid model for AGN feedback affects the evolution of the inner density pr
Although there are many more stellar population studies of elliptical and lenticular galaxies, studies of spiral galaxies are catching up, due to higher signal to noise data on one hand, and better analysis methods on the other. Here I start by discu
Timing decisions are common: when to file your taxes, finish a referee report, or complete a task at work. We ask whether time preferences can be inferred when textsl{only} task completion is observed. To answer this question, we analyze the followin