ﻻ يوجد ملخص باللغة العربية
Let $f:{mathbb B}^n to {mathbb B}^N$ be a holomorphic map. We study subgroups $Gamma_f subseteq {rm Aut}({mathbb B}^n)$ and $T_f subseteq {rm Aut}({mathbb B}^N)$. When $f$ is proper, we show both these groups are Lie subgroups. When $Gamma_f$ contains the center of ${bf U}(n)$, we show that $f$ is spherically equivalent to a polynomial. When $f$ is minimal we show that there is a homomorphism $Phi:Gamma_f to T_f$ such that $f$ is equivariant with respect to $Phi$. To do so, we characterize minimality via the triviality of a third group $H_f$. We relate properties of ${rm Ker}(Phi)$ to older results on invariant proper maps between balls. When $f$ is proper but completely non-rational, we show that either both $Gamma_f$ and $T_f$ are finite or both are noncompact.
We make several new contributions to the study of proper holomorphic mappings between balls. Our results include a degree estimate for rational proper maps, a new gap phenomenon for convex families of arbitrary proper maps, and an interesting result about inverse images.
Let $mathcal{G}$ resp. $M$ be a positive dimensional Lie group resp. connected complex manifold without boundary and $V$ a finite dimensional $C^{infty}$ compact connected manifold, possibly with boundary. Fix a smoothness class $mathcal{F}=C^{infty}
We construct a complete proper holomorphic embedding from any strictly pseudoconvex domain with $mathcal{C}^2$-boundary in $mathbb{C}^n$ into the unit ball of $mathbb{C}^N$, for $N$ large enough, thereby answering a question of Alarcon and Forstneric.
We survey recent work and announce new results concerning two singular integral operators whose kernels are holomorphic functions of the output variable, specifically the Cauchy-Leray integral and the Cauchy-SzegH o projection associated to various c
We continue the studies of Moutard-type transform for generalized analytic functions started in our previous paper: arXiv:1510.08764. In particular, we suggest an interpretation of generalized analytic functions as spinor fields and show that in the